Patents by Inventor Dietmar Wahl

Dietmar Wahl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11194379
    Abstract: A wake-up circuit and method are provided for detecting and preventing false positive wake-up events in an electronic device in a sleep mode. Methodology entails producing first, second, and third sensor signals at successive first, second, and third instants in time in response to a physical stimulus detected by a sensor of the wake-up circuit. The first sensor signal is selected to be a reference value. A first difference value is determined between the second sensor signal land the reference value, a second difference value is determined between the third sensor signal and the reference value, and communication of a wake-up signal to the electronic device is prevented when at least one of the first and second difference values fails to exceed a threshold value.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: December 7, 2021
    Assignee: NXP USA, Inc.
    Inventors: Volker Dietmar Wahl, Philippe Bernard Roland Lance, Jacques Trichet
  • Publication number: 20200326768
    Abstract: A wake-up circuit and method are provided for detecting and preventing false positive wake-up events in an electronic device in a sleep mode. Methodology entails producing first, second, and third sensor signals at successive first, second, and third instants in time in response to a physical stimulus detected by a sensor of the wake-up circuit. The first sensor signal is selected to be a reference value. A first difference value is determined between the second sensor signal and the reference value, a second difference value is determined between the third sensor signal and the reference value, and communication of a wake-up signal to the electronic device is prevented when at least one of the first and second difference values fails to exceed a threshold value.
    Type: Application
    Filed: March 30, 2020
    Publication date: October 15, 2020
    Inventors: Volker Dietmar Wahl, Philippe Bernard Roland Lance, Jacques Trichet
  • Patent number: 10338996
    Abstract: A pipelined decoder for storaging of soft bits and hard bits associated with code blocks of a transmission. The proposed circuit reduces the amount of memory needed at the receiver level for soft bits and hard bits, in a pipelined decoder. Namely, with the solution of the subject application, both the LLRs and hard bits associated with a given code block are available when the CRC value is determined. Hence, the effect obtained non-pipelined decoder is achieved by the pipelined decoder of the subject application. A receiver for a wireless communication system, a method and a computer program are also disclosed.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: July 2, 2019
    Assignee: NXP USA, Inc.
    Inventors: Vincent Pierre Martinez, Volker Dietmar Wahl
  • Publication number: 20160218830
    Abstract: A pipelined decoder for storaging of soft bits and hard bits associated with code blocks of a transmission. The proposed circuit reduces the amount of memory needed at the receiver level for soft bits and hard bits, in a pipelined decoder. Namely, with the solution of the subject application, both the LLRs and hard bits associated with a given code block are available when the CRC value is determined. Hence, the effect obtained non-pipelined decoder is achieved by the pipelined decoder of the subject application. A receiver for a wireless communication system, a method and a computer program are also disclosed.
    Type: Application
    Filed: June 29, 2015
    Publication date: July 28, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: VINCENT PIERRE MARTINEZ, VOLKER DIETMAR WAHL
  • Patent number: 9272266
    Abstract: A supported palladium-gold catalyst is produced under mild conditions using a commonly available base, such as sodium hydroxide (NaOH) or sodium carbonate (Na2CO3). In this method, support materials and a base solution are mixed together and the temperature of the mixture is increased to a temperature above room temperature. Then, palladium salt and gold salt are added to the mixture while maintaining the pH of the mixture to be greater than 7.0 and keeping the mixture at a temperature above room temperature. This is followed by cooling the mixture while adding acetic acid to maintain the pH of the mixture to be within a desired pH range, filtering out the supported palladium-gold particles, washing with a pH buffer solution and calcining.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 1, 2016
    Assignee: WGCH Technology Limited
    Inventors: Xianghong Hao, Ramesh Sharma, Geoffrey McCool, Brian Harrison, Dietmar Wahl
  • Patent number: 8415269
    Abstract: A supported palladium-gold catalyst is produced under mild conditions using a commonly available base, such as sodium hydroxide (NaOH) or sodium carbonate (Na2CO3). In this method, support materials and a base solution are mixed together and the temperature of the mixture is increased to a temperature above room temperature. Then, palladium salt and gold salt are added to the mixture while maintaining the pH of the mixture to be greater than 7.0 and keeping the mixture at a temperature above room temperature. This is followed by cooling the mixture while adding acetic acid to maintain the pH of the mixture to be within a desired pH range, filtering out the supported palladium-gold particles, washing with a pH buffer solution and calcining.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: April 9, 2013
    Assignee: WGCH Technology Limited
    Inventors: Xianghong Hao, Ramesh Sharma, Geoffrey McCool, Brian Harrison, Dietmar Wahl
  • Publication number: 20100184587
    Abstract: A supported palladium-gold catalyst is produced under mild conditions using a commonly available base, such as sodium hydroxide (NaOH) or sodium carbonate (Na2CO3). In this method, support materials and a base solution are mixed together and the temperature of the mixture is increased to a temperature above room temperature. Then, palladium salt and gold salt are added to the mixture while maintaining the pH of the mixture to be greater than 7.0 and keeping the mixture at a temperature above room temperature. This is followed by cooling the mixture while adding acetic acid to maintain the pH of the mixture to be within a desired pH range, filtering out the supported palladium-gold particles, washing with a pH buffer solution and calcining.
    Type: Application
    Filed: January 13, 2010
    Publication date: July 22, 2010
    Inventors: Xianghong Hao, Ramesh Sharma, Geoffrey McCool, Brian Harrison, Dietmar Wahl