Patents by Inventor Dietrich Scheglmann

Dietrich Scheglmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240199628
    Abstract: Biologically active compounds are provided that may be used as photosensitizers for diagnostic and therapeutic applications, particularly for phototherapy, including photodynamic therapy, of viral or bacterial infections. As the compounds exhibit also toxicity against targets (bacteria, viruses) without light these biologically active compounds may also be used for the light-independent treatment of such diseases. Embodiments include porphyrins, chlorins, and dihydroxy chlorins as well as their zinc complexes. Also included are embodiments where these compounds are incorporated into liposomal formulations.
    Type: Application
    Filed: April 4, 2023
    Publication date: June 20, 2024
    Inventors: Volker Albrecht, Hagen Von Briesen, Dietrich Scheglmann, Burkhard Gitter, Arno Wiehe, Sylvia Wagner, Anja Germann, Dorika STEEN, Gerhard Wieland
  • Patent number: 9040079
    Abstract: A special photosensitizer formulation and Photodynamic Therapy method for treating choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD) is provided. CNV is a major cause for vision loss in elderly patients. A special drug delivery formulation is used to encapsulate the hydrophobic photosensitizer, preferably a pegylated liposome. This improves the solubility and therapeutic index of the photosensitizers. In one preferred embodiment, a pegylated photoactive agent remains confined in the intravascular compartment of neovasculature for a longer duration. Thus efficient elimination of neovascular proliferation and minimal damage to extravascular tissue and normal vessels is ensured. In this method, a hydrophobic photosensitizer, that is able to photochemically destroy neovessels, is injected into the patient. CNV irradiation with a non-thermal laser follows after a predefined time interval.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: May 26, 2015
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Volker Albrecht, Stefan Spaniol, Dietrich Scheglmann
  • Patent number: 8986731
    Abstract: Pharmaceutical pegylated liposomal formulations for photodynamic therapy are presented. The pegylated liposomal formulation provides therapeutically effective amounts of the photosensitizer for intravenous administration. At least one of the phospholipids in the liposomes has been linked with poly ethylene glycol (PEG) as an integral part of the phospholipids. The formed pegylated liposomes contain the hydrophobic photosensitizer within the lipid bilayer membrane. Pegylation of liposomes carrying the hydrophobic photosensitizer helps to maintain the drug level within the therapeutic window for longer time periods and provides the drug a longer circulating half life in vivo. Further the pegylated formulation of hydrophobic photosensitizers shows improved pharmacokinetics over standard non-liposomal formulations thus enhancing the efficacy of PDT with the pegylated liposomal formulations.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: March 24, 2015
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Volker Albrecht, Alfred Fahr, Dietrich Scheglmann, Susanna Gräfe, Wolfgang Neuberger
  • Patent number: 8858989
    Abstract: The present invention relates to improved methods of formulations of hydrophobic photosensitizers, and their precursors, for mucosal administration. The formulation of the invention comprises of hydrophobic photosensitizers which have been incorporated into suitably sized liposomes. Additionally, these formulations include the incorporation of PS-loaded liposomes into a copolymer matrix. The liposome of the present invention allows the hydrophobic photosensitizers to be incorporated into the thermogel matrix and thus promoting intimate contact between the formulation and the mucosal layer for enhanced drug absorption.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: October 14, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Volker Albrecht, Dietrich Scheglmann
  • Patent number: 8815931
    Abstract: Oral formulations and method of formulating photosensitive agents for oral administration during photodynamic therapy (PDT) and Antimicrobial photodynamic therapy (APDT) treatment are presented. The oral formulated photosensitizers show increased solubility and permeability, thus improving the bioavailability of photosensitizers at the treatment site. An orally administered photosensitizer is suitably formulated for mucosal adhesion and absorption via gastrointestinal mucosal membranes. Oral formulation provided herein use lipids and known proteins as carriers for photosensitizers by oral route. Carriers for encapsulating preselected photosensitizers include conventional liposomes, pegylated liposomes, nanoemulsions, nanocrystrals, nanoparticles, fatty emulsions, lipidic formulations, hydrosols, SMEDDS, Alpha-Feto protein (AFP), and Bovine-Serum-Albumin (BSA), fatty emulsions, hot-melt-extrudates and nanoparticles.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: August 26, 2014
    Assignee: Biolitec Pharma Marketing Ltd
    Inventors: Susanna Gräfe, Nikolay Nifantiev, Albrecht Volker, Wolfgang Neuberger, Gerhard Wieland, Dietrich Scheglmann, Alfred Fahr, Arno Wiehe
  • Publication number: 20120101427
    Abstract: The present invention provides novel drug formulations for oral administration for diverse medical applications including anticancer, antimetastatic, antibacterial, antifungal, antiprotozoic, antiviral, antiprionic and PDT treatments for diagnostic and therapeutic purposes. In a preferred embodiment the oral drug formulation comprises a photosensitizer and suitable excipients and may be administered in multiple doses over an extended period of time with exposure to activating radiation occurring generally between individual doses or in a light-independent manner. In another preferred embodiment PDT methods for treating hyperplasia and neoplasia, for localizing hyperplasic and neoplasic tissues and pathogen bacteria by fluorescence, for treating infections caused by pathogen bacteria in complex body fluids and for fat reduction, skin disorders and vascular diseases are provided.
    Type: Application
    Filed: April 28, 2009
    Publication date: April 26, 2012
    Inventors: Gerard Farmer, Gerhard Wieland, Dietrich Scheglmann, Arno Wiehe, Susanna Gräfe, Nikolay E. Nufantiev, Volker Albrecht, Wolfgang Neuberger
  • Publication number: 20100273803
    Abstract: Oral formulations and method of formulating photosensitive agents for oral administration during photodynamic therapy (PDT) and Antimicrobial photodynamic therapy (APDT) treatment are presented. The oral formulated photosensitizers show increased solubility and permeability, thus improving the bioavailability of photosensitizers at the treatment site. An orally administered photosensitizer is suitably formulated for mucosal adhesion and absorption via gastrointestinal mucosal membranes. Oral formulation provided herein use lipids and known proteins as carriers for photosensitizers by oral route. Carriers for encapsulating preselected photosensitizers include conventional liposomes, pegylated liposomes, nanoemulsions, nanocrystrals, nanoparticles, fatty emulsions, lipidic formulations, hydrosols, SMEDDS, Alpha-Feto protein (AFP), and Bovine-Serum-Albumin (BSA), fatty emulsions, hot-melt-extrudates and nanoparticles.
    Type: Application
    Filed: April 27, 2010
    Publication date: October 28, 2010
    Inventors: Susanna Gräfe, Nikolay Nifantiev, Albrecht Volker, Wolfgang Neuberger, Gerhard Wieland, Dietrich Scheglmann, Alfred Fahr, Arno Wiehe
  • Publication number: 20100247626
    Abstract: A special photosensitizer formulation and Photodynamic Therapy method for treating choroidal neovascularization (CNV) associated with age-related macular degeneration (AMD) is provided. CNV is a major cause for vision loss in elderly patients. A special drug delivery formulation is used to encapsulate the hydrophobic photosensitizer, preferably a pegylated liposome. This improves the solubility and therapeutic index of the photosensitizers. In one preferred embodiment, a pegylated photoactive agent remains confined in the intravascular compartment of neovasculature for a longer duration. Thus efficient elimination of neovascular proliferation and minimal damage to extravascular tissue and normal vessels is ensured. In this method, a hydrophobic photosensitizer, that is able to photochemically destroy neovessels, is injected into the patient. CNV irradiation with a non-thermal laser follows after a predefined time interval.
    Type: Application
    Filed: November 19, 2008
    Publication date: September 30, 2010
    Inventors: Volker Albrecht, Stefan Spaniol, Dietrich Scheglmann
  • Publication number: 20090169611
    Abstract: The present invention relates to improved methods of formulations of hydrophobic photosensitizers, and their precursors, for mucosal administration. The formulation of the invention comprises of hydrophobic photosensitizers which have been incorporated into suitably sized liposomes. Additionally, these formulations include the incorporation of PS-loaded liposomes into a copolymer matrix. The liposome of the present invention allows the hydrophobic photosensitizers to be incorporated into the thermogel matrix and thus promoting intimate contact between the formulation and the mucosal layer for enhanced drug absorption.
    Type: Application
    Filed: May 16, 2007
    Publication date: July 2, 2009
    Inventors: Volker Albrecht, Dietrich Scheglmann
  • Publication number: 20090081281
    Abstract: Highly flexible penetrating liposomal carrier systems are formulated with enhanced skin penetration properties. These specialized formulations of highly flexible penetrating liposomal delivery systems comprise one or more phospholipids, lysophosphatides and hydrophobic photosensitizer. This new formulations can squeeze liposomal particles through intercellular regions of stratum corneum as intact structures, and, in this way, deliver encapsulated photosensitizer to the epidermis, dermis, hypodermis and surroundings. The penetrating liposomal formulation provides therapeutically effective amounts of the hydrophobic photosensitizer through topical application with better skin penetration thus improving drug targeting and the efficacy of photodynamic therapy (PDT).
    Type: Application
    Filed: May 8, 2007
    Publication date: March 26, 2009
    Inventors: Gerard Farmer, Dietrich Scheglmann, Volker Albrecht, Nikolay E. Nifantiev
  • Publication number: 20080279921
    Abstract: The present invention relates to improved methods of formulations of hydrophobic photosensitizers, and their precursors, for mucosal administration. The formulation of the invention comprises of hydrophobic photosensitizers which have been incorporated into suitably sized liposomes. Additionally, these formulations include the incorporation of PS-loaded liposomes into a copolymer matrix. The liposome of the present invention allows the hydrophobic photosensitizers to be incorporated into the thermogel matrix and thus promoting intimate contact between the formulation and the mucosal layer for enhanced drug absorption.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 13, 2008
    Inventors: Volker Albrecht, Dietrich Scheglmann
  • Publication number: 20080274169
    Abstract: Highly flexible penetrating liposomal carrier systems are formulated with enhanced skin penetration properties. These specialized formulations of highly flexible penetrating liposomal delivery systems comprise one or more phospholipids, lysophosphatides and hydrophobic photosensitizer. This new formulations can squeeze liposomal particles through intercellular regions of stratum corneum as intact structures, and, in this way, deliver encapsulated photosensitizer to the epidermis, dermis, hypodermis and surroundings. The penetrating liposomal formulation provides therapeutically effective amounts of the hydrophobic photosensitizer through topical application with better skin penetration thus improving drug targeting and the efficacy of photodynamic therapy (PDT).
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Inventors: Gerard Farmer, Dietrich Scheglmann, Volker Albrecht, Nikolay E. Nifantiev
  • Patent number: 7354599
    Abstract: Pharmaceutical liposomal formulations are described for photodynamic therapy comprising a, hydrophobic porphyrin photosensitizer, a monosaccharide and one or more synthetic phospholipids, which are stable in storage especially through freeze-drying process. The liposomal formulations provide therapeutically effective amounts of the photosensitizer for intravenous administration. In particular derivatives of chlorins and bacteriochlorins, such as temoporfin, are, hydrophobic photosensitizers whose efficacy and safety are enhanced by such liposomal formulations. The formulation can be efficiently freeze-dried preserving the size of the liposomal vehicles, and the content of a therapeutically effective amount of the photosensitizer, due to the selection of phospholipids and monosaccharides. The invention also relates to liposome compositions formed upon reconstitution with an aqueous vehicle.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: April 8, 2008
    Assignee: CeramOptec Industries, Inc.
    Inventors: Volker Albrecht, Alfred Fahr, Dietrich Scheglmann, Susanna Gräfe, Wolfgang Neuberger
  • Publication number: 20060159740
    Abstract: Pharmaceutical liposomal formulations for photodynamic therapy are presented, which are stable in storage as liquid formulations, comprise a hydrophobic photosensitizer and one or more synthetic phospholipids. The liposomal formulations provide therapeutically effective amounts of the photosensitizer for intravenous administration. The formed liposomes contain the hydrophobic photosensitizer within the lipid bilayer membrane. In the present formulation the size of the liposomal vehicles and their content of a therapeutically effective amount of the photosensitizing agent remain unchanged over storage times of a year or more, thus making the liquid formulations commercially viable. Being stable in the liquid state also makes them easy to store, and easier to use for doctors and patients. They can be prepared in a ‘factory setting’ delivered to practitioners in a liquid state and be available for use in PDT related treatments as called for by the practitioners' patient needs.
    Type: Application
    Filed: March 20, 2006
    Publication date: July 20, 2006
    Inventors: Volker Albrecht, Alfred Fahr, Dietrich Scheglmann, Susanna Grafe, Wolfgang Neuberger
  • Publication number: 20060088584
    Abstract: Pharmaceutical liposomal formulations are described for photodynamic therapy comprising a, hydrophobic porphyrin photosensitizer, a monosaccharide and one or more synthetic phospholipids, which are stable in storage especially through freeze-drying process. The liposomal formulations provide therapeutically effective amounts of the photosensitizer for intravenous administration. In particular derivatives of chlorins and bacteriochlorins, such as temoporfin, are, hydrophobic photosensitizers whose efficacy and safety are enhanced by such liposomal formulations. The formulation can be efficiently freeze-dried preserving the size of the liposomal vehicles, and the content of a therapeutically effective amount of the photosensitizer, due to the selection of phospholipids and monosaccharides. The invention also relates to liposome compositions formed upon reconstitution with an aqueous vehicle.
    Type: Application
    Filed: December 9, 2005
    Publication date: April 27, 2006
    Inventors: Volker Albrecht, Alfred Fahr, Dietrich Scheglmann, Susanna Grafe, Wolfgang Neuberger
  • Publication number: 20050048109
    Abstract: A pharmaceutical liposomal formulation for photodynamic therapy comprising a non-polar porphyrin photosensitizer and one or more phospholipids, which are stable in storage without requiring freeze-drying is described. The liposomal formulation provides therapeutically effective amounts of the photosensitizer for intravenous administration. The phospholipids may be modified by pegylation, i.e. they contain poly ethylene glycol as an integral part of the phospholipids. The formed liposomes contain the non-polar photosensitizer within the membrane and are useful for the combined targeting of a non-polar photosensitizer and a second polar substance. When a formulation includes the presence of monosaccharides or polyalcohols, it can be efficiently freeze-dried preserving the size of the liposomal vehicles and the content of a therapeutically effective amount of the photosensitizing agent. The invention also relates to the liposome composition formed upon reconstitution with an aqueous vehicle.
    Type: Application
    Filed: August 26, 2003
    Publication date: March 3, 2005
    Inventors: Volker Albrecht, Alfred Fahr, Dietrich Scheglmann, Susanna Grafe, Wolfgang Neuberger