Patents by Inventor Digvijay A. Jadhav

Digvijay A. Jadhav has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230413194
    Abstract: An electronic device may include a radio that generates a first maximum power based on a radio-frequency exposure (RFE) budget. The radio may transmit signals subject to the first maximum power during a subperiod of an averaging period and may generate an instantaneous RFE metric value based on an antenna coefficient and the conducted transmit power of the antenna during the subperiod. The radio may generate a consumed RFE value by averaging the instantaneous RFE metric value with previous instantaneous RFE values from the averaging period, may generate a remaining budget based on the consumed RFE value, may generate a second maximum transmit power based on the remaining budget, and may transmit signals during a subsequent subperiod subject to the second maximum power. Time-averaging the RFE metric may serve to optimize performance of the radio relative to scenarios where the radio performs time-averaging of conducted TX power.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Patent number: 11792747
    Abstract: An electronic device may include a radio that generates a first maximum power based on a radio-frequency exposure (RFE) budget. The radio may transmit signals subject to the first maximum power during a subperiod of an averaging period and may generate an instantaneous RFE metric value based on an antenna coefficient and the conducted transmit power of the antenna during the subperiod. The radio may generate a consumed RFE value by averaging the instantaneous RFE metric value with previous instantaneous RFE values from the averaging period, may generate a remaining budget based on the consumed RFE value, may generate a second maximum transmit power based on the remaining budget, and may transmit signals during a subsequent subperiod subject to the second maximum power. Time-averaging the RFE metric may serve to optimize performance of the radio relative to scenarios where the radio performs time-averaging of conducted TX power.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: October 17, 2023
    Assignee: Apple Inc.
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Publication number: 20230327697
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 12, 2023
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 11695443
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: July 4, 2023
    Assignee: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Publication number: 20220408378
    Abstract: An electronic device may include a radio that generates a first maximum power based on a radio-frequency exposure (RFE) budget. The radio may transmit signals subject to the first maximum power during a subperiod of an averaging period and may generate an instantaneous RFE metric value based on an antenna coefficient and the conducted transmit power of the antenna during the subperiod. The radio may generate a consumed RFE value by averaging the instantaneous RFE metric value with previous instantaneous RFE values from the averaging period, may generate a remaining budget based on the consumed RFE value, may generate a second maximum transmit power based on the remaining budget, and may transmit signals during a subsequent subperiod subject to the second maximum power. Time-averaging the RFE metric may serve to optimize performance of the radio relative to scenarios where the radio performs time-averaging of conducted TX power.
    Type: Application
    Filed: July 15, 2022
    Publication date: December 22, 2022
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Publication number: 20220368366
    Abstract: An electronic device may include a first set of radios subject to a specific absorption rate (SAR) limit and a second set of radios subject to a maximum permissible exposure (MPE) limit over an averaging period. Control circuitry may dynamically adjust radio-frequency (RF) exposure metric budgets provided to the radios over the averaging period, based on feedback reports from the radios identifying the amount of SAR and MPE consumed by the radios during different subperiods of the averaging period. The control circuitry may distribute and adjust SAR budgets and MPE budgets across the radios based on the feedback reports, distribution policies, radio statuses, transmit activity factors, and/or usage ratios associated with the radios. This may provide efficient utilization of the total available SAR and MPE budget, thereby leading to increased uplink coverage and throughput relative to scenarios where the SAR and MPE budgets remain static.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 17, 2022
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Publication number: 20220302946
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 11438023
    Abstract: An electronic device may include a first set of radios subject to a specific absorption rate (SAR) limit and a second set of radios subject to a maximum permissible exposure (MPE) limit over an averaging period. Control circuitry may dynamically adjust radio-frequency (RF) exposure metric budgets provided to the radios over the averaging period, based on feedback reports from the radios identifying the amount of SAR and MPE consumed by the radios during different subperiods of the averaging period. The control circuitry may distribute and adjust SAR budgets and MPE budgets across the radios based on the feedback reports, distribution policies, radio statuses, transmit activity factors, and/or usage ratios associated with the radios. This may provide efficient utilization of the total available SAR and MPE budget, thereby leading to increased uplink coverage and throughput relative to scenarios where the SAR and MPE budgets remain static.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: September 6, 2022
    Assignee: Apple Inc.
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Patent number: 11432249
    Abstract: An electronic device may include a radio that generates a first maximum power based on a radio-frequency exposure (RFE) budget. The radio may transmit signals subject to the first maximum power during a subperiod of an averaging period and may generate an instantaneous RFE metric value based on an antenna coefficient and the conducted transmit power of the antenna during the subperiod. The radio may generate a consumed RFE value by averaging the instantaneous RFE metric value with previous instantaneous RFE values from the averaging period, may generate a remaining budget based on the consumed RFE value, may generate a second maximum transmit power based on the remaining budget, and may transmit signals during a subsequent subperiod subject to the second maximum power. Time-averaging the RFE metric may serve to optimize performance of the radio relative to scenarios where the radio performs time-averaging of conducted TX power.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: August 30, 2022
    Assignee: Apple Inc.
    Inventors: Sharad Sambhwani, Digvijay A. Jadhav, Dirk Nickisch, Gil Katzir, Laxminarayana Pillutla
  • Patent number: 11387860
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: July 12, 2022
    Assignee: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Publication number: 20210184714
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Publication number: 20210099194
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Application
    Filed: February 11, 2020
    Publication date: April 1, 2021
    Applicant: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 10965335
    Abstract: A dynamic specific absorption rate (SAR) may be implemented by monitoring and controlling power utilization of the various radio frequency (RF) emitting components over time within a mobile device. Power utilization may be tracked and modified to control the time-averaged RF exposure over a rolling time window. Periodically calculations of the updated rolling averages for RF transmissions may be performed based on the transmission data received from the mobile device components, and the continuously updated rolling averages of RF transmissions may be compared to time-average power utilization limits. Based on such comparisons, the mobile device may dynamically adjust the current transmissions of the radio transceivers and other RF emitting components on the mobile device.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: March 30, 2021
    Assignee: Apple Inc.
    Inventors: Digvijay A. Jadhav, Gary Leung, Mark D. Neumann, Indranil S. Sen
  • Patent number: 10716073
    Abstract: In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: July 14, 2020
    Assignee: Apple Inc.
    Inventors: Gunes Dervisoglu, Indranil S. Sen, Umamahesh Srinivas, Digvijay A. Jadhav, Sunny Kai Pang Chow, Hung A. Pham, Anil K. Kandangath, Xiaoyuan Tu, Jonathan C. King
  • Publication number: 20180032211
    Abstract: Acoustic touch detection (touch sensing) system architectures and methods can be used to detect an object touching a surface. Position of an object touching a surface can be determined using time-of-flight (TOF) bounding box techniques, or acoustic image reconstruction techniques, for example. Acoustic touch sensing can utilize transducers, such as piezoelectric transducers, to transmit ultrasonic waves along a surface and/or through the thickness of an electronic device. Location of the object can be determined, for example, based on the amount of time elapsing between the transmission of the wave and the detection of the reflected wave. An object in contact with the surface can interact with the transmitted wave causing attenuation, redirection and/or reflection of at least a portion of the transmitted wave. Portions of the transmitted wave energy after interaction with the object can be measured to determine the touch location of the object on the surface of the device.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Inventors: Brian Michael KING, Mohammad YEKE YAZDANDOOST, Ehsan KHAJEH, Aaron Scott TUCKER, Giovanni GOZZINI, Marcus YIP, Marduke YOUSEFPOR, Digvijay JADHAV, Indranil SEN, Mohit NARANG, Yi JIANG, Vahid MAJIDZADEH BAFAR, Mansour KERAMAT, Hao XU
  • Publication number: 20160366654
    Abstract: In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Applicant: Apple Inc.
    Inventors: Gunes Dervisoglu, Indranil S. Sen, Umamahesh Srinivas, Digvijay A. Jadhav, Sunny Kai Pang Chow, Hung A. Pham, Anil K. Kandangath, Xiaoyuan Tu, Jonathan C. King
  • Patent number: 9398456
    Abstract: An electronic device may be provided with wireless circuitry for transmitting and receiving wireless signals. Control circuitry may be used to adjust transmit power levels for the wireless signals and other settings for the wireless circuitry. The electronic device may be operated in conjunction with an external accessory. The accessory may be equipment that includes a dock connector, a case to enclose the electronic device, equipment that is coupled to the electronic device using a cable, or other external electronic equipment. An identifier may be stored in the accessory. The impact of the accessory on the wireless performance of the electronic device may be characterized and associated with the identifier. During operation of the electronic device, the electronic device may adjust transmit power levels and other settings based on the identifier of the accessory and based on sensor data, user input, and other information.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 19, 2016
    Assignee: Apple Inc.
    Inventors: Digvijay A. Jadhav, Indranil S. Sen, Jonathan C. King
  • Patent number: 9300342
    Abstract: An electronic device may be provided with antenna structures. Proximity sensors and other sensors may be used in determining how the electronic device is being operated. Wireless circuitry such as a radio-frequency transmitter associated with a cellular telephone communications band, a wireless local area network band, or other communications band may be used in transmitting radio-frequency signals through the antenna structures at a transmit power. Control circuitry may adjust the wireless circuitry to ensure that the transmit power is capped at a maximum transmit power. The maximum transmit power may be adjusted dynamically by the control circuitry based on data from the proximity sensors, data from a magnetic sensor that detects whether a cover is present on the device, a connector sensor that detects whether the device is coupled to a dock or other accessory, and other sensors.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: March 29, 2016
    Assignee: Apple Inc.
    Inventors: Robert W. Schlub, Yi Jiang, Qingxiang Li, Digvijay Jadhav, Matthew Fong, Brian Mariner
  • Patent number: 9231686
    Abstract: Dynamic antenna switching based on weighted signal to noise ratio (SNR). A wireless device may include multiple antennas. SNR at each active antenna may be calculated. An antenna-specific weight may be applied to each antenna's SNR. The antenna-specific weights may further be radio specific and/or transmit or receive specific in some cases. Antenna selection (possibly just for a specific radio and/or for transmit or receive operations, depending on the specificity of the antenna weights), including potentially switching which antenna is used, may be based on the resulting weighted SNR values for each antenna. If the antenna-specific weights are radio specific and/or transmit or receive operation specific, the method may be performed multiple times with different antenna-specific weights to select antenna(s) for different radios and/or for other operations.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 5, 2016
    Assignee: Apple Inc.
    Inventors: Xiaojun Chen, Peter M Agboh, Indranil S Sen, Hsin-Yuo Liu, Vusthia Sunil Reddy, Diego C Hernandez, Digvijay A Jadhav, Mohit Narang, Ruben Caballero
  • Publication number: 20150349870
    Abstract: Dynamic antenna switching based on weighted signal to noise ratio (SNR). A wireless device may include multiple antennas. SNR at each active antenna may be calculated. An antenna-specific weight may be applied to each antenna's SNR. The antenna-specific weights may further be radio specific and/or transmit or receive specific in some cases. Antenna selection (possibly just for a specific radio and/or for transmit or receive operations, depending on the specificity of the antenna weights), including potentially switching which antenna is used, may be based on the resulting weighted SNR values for each antenna. If the antenna-specific weights are radio specific and/or transmit or receive operation specific, the method may be performed multiple times with different antenna-specific weights to select antenna(s) for different radios and/or for other operations.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Apple Inc.
    Inventors: Xiaojun Chen, Peter M. Agboh, Indranil S. Sen, Hsin-Yuo Liu, Vusthia Sunil Reddy, Diego C. Hernandez, Digvijay A. Jadhav, Mohit Narang, Ruben Caballero