Patents by Inventor Dilip M. Shah

Dilip M. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8016549
    Abstract: A method is provided for engineering a single crystal cast gas turbine engine first component for cooperating with a second component. An at least local first operational stress on the first component is determined. The first operational stress has a first direction. A crystal orientation within the component or a physical configuration of the component is selected so that the first operational stress produces a desired engagement of the first component with the second component associated with either a negative Poisson's effect or high Poisson's effect in a second direction. Single crystal or highly textured iron- and nickel-base alloys enable one to use such effect in high temperature and/or corrosive environments.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: September 13, 2011
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Joseph G. Hillebrand, Daniel E. Kane
  • Publication number: 20110143164
    Abstract: A coated article having an improved coating oxidation life includes a superalloy substrate material having a composition which includes sulfur, herein the sulfur is present in an amount less than 1 ppm; and an overlay coating formed over a surface of the substrate material.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 16, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alan D. Cetel, Dilip M. Shah
  • Publication number: 20110081235
    Abstract: A method is provided for engineering a single crystal cast gas turbine engine first component for cooperating with a second component. An at least local first operational stress on the first component is determined. The first operational stress has a first direction. A crystal orientation within the component or a physical configuration of the component is selected so that the first operational stress produces a desired engagement of the first component with the second component associated with either a negative Poisson's effect or high Poisson's effect in a second direction. Single crystal or highly textured iron- and nickel-base alloys enable one to use such effect in high temperature and/or corrosive environments.
    Type: Application
    Filed: July 13, 2006
    Publication date: April 7, 2011
    Inventors: Dilip M. Shah, Joseph G. Hillebrand, Daniel E. Kane
  • Patent number: 7871247
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 18, 2011
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Publication number: 20100135846
    Abstract: A first embodiment of a nickel based alloy consists essentially of from 3.0 to 5.2 wt % chromium, from 1.5 to 3.0 wt % molybdenum, from 6.0 to 12.5 wt % tungsten, from 5.0 to 11 wt % tantalum, from 5.5 to 6.5 wt % aluminum, from 11 to 14 wt % cobalt, from 0.001 to 1.75 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel. Another embodiment of a nickel based alloy consists essentially of from 1.0 to 3.0 wt % chromium, up to 2.5 wt % molybdenum, from 11 to 16 wt % tungsten, from 4.0 to 8.0 tantalum, from 5.7 to 6.5 wt % aluminum, from 11 to 15 wt % cobalt, from 2.0 to 4.0 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alan D. Cetel, Dilip M. Shah
  • Publication number: 20090297359
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Application
    Filed: August 17, 2007
    Publication date: December 3, 2009
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Patent number: 7575039
    Abstract: A refractory metal core for use in a casting system has a coating for providing oxidation resistance during shell fire and protection against reaction/dissolution during casting. In a first embodiment, the coating includes at least one oxide and a silicon containing material. In a second embodiment, the coating includes an oxide selected from the group of calcia, magnesia, alumina, zirconia, chromia, yttria, silica, hafnia, and mixtures thereof. In a third embodiment, the coating includes a nitride selected from the group of silicon nitride, sialon, titanium nitride, and mixtures thereof. Other coating embodiments are described in the disclosure.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 18, 2009
    Assignee: United Technologies Corporation
    Inventors: James T. Beals, Joshua Persky, Dilip M. Shah, Venkat Seetharaman, Sudhangshu Bose, Jacob Snyder, Keith Santeler, Carl Verner, Stephen D. Murray, John Marcin, Dinesh Gupta, Daniel A. Bales, Daniel Francis Paulonis, Glenn Cotnoir, John Wiedemer
  • Publication number: 20090114797
    Abstract: A refractory metal core for use in a casting system has a coating for providing oxidation resistance during shell fire and protection against reaction/dissolution during casting. In a first embodiment, the coating includes at least one oxide and a silicon containing material. In a second embodiment, the coating includes an oxide selected from the group of calcia, magnesia, alumina, zirconia, chromia, yttria, silica, hafnia, and mixtures thereof. In a third embodiment, the coating includes a nitride selected from the group of silicon nitride, sialon, titanium nitride, and mixtures thereof. Other coating embodiments are described in the disclosure.
    Type: Application
    Filed: October 15, 2003
    Publication date: May 7, 2009
    Inventors: James T. Beals, Joshua Persky, Dilip M. Shah, Venkat Seetharaman, Sudhangshu Bose, Jacob Snyder, Keith Santeler, Carl Verner, Stephen D. Murray, John J. Marcin, Dinesh Gupta, Daniel A. Bales, Daniel Francis Paulonis, Glenn Cotnoir, John Wiedemer
  • Patent number: 7338259
    Abstract: A high modulus component, such as an aircraft engine turbine blade, is formed from a base metal that has a high modulus crystallographic orientation that is aligned with the primary, i.e. radial, direction of the turbine blade. The base metal is Ni, Fe, Ti, Co, Al, Nb, or Mo based alloy. Alignment of a high modulus direction of the base metal with the primary direction provides enhanced high cycle fatigue life.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: March 4, 2008
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan D. Cetel, Alan W. Stoner, William P. Allen
  • Patent number: 6913064
    Abstract: A casting system for forming a gas turbine engine component is provided. The casting system, in a first embodiment, comprises a shaped refractory metal sheet having a plurality of features for forming a plurality of film cooling passages, which features are formed from refractory metal material bent out of the sheet. The casting system for forming a gas turbine engine component in a second embodiment comprises a metal wall having an airfoil shape and a refractory metal core adjacent the metal wall and having a shape corresponding to the shape of the metal wall.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 5, 2005
    Assignee: United Technologies Corporation
    Inventors: James T. Beals, Dilip M. Shah, Jacob Snyder, John Wiedemer
  • Publication number: 20040200549
    Abstract: Corrosion and oxidation resistant, high strength, directionally solidified superalloy alloys and articles are described. The articles have a nominal composition in weight percent of about 12.1% Cr, 9% Co, 1.9% Mo, 3.8% W, 5% Ta, 3.6% Al, 4.1% Ti, 0.013% B, 0.1 % C, up to about 0.01 Zr, balance essentially nickel. The resultant articles have good hot corrosion resistance, oxidation resistance and creep properties. The articles are preferably cast as equiaxed articles such as gas turbine engine components.
    Type: Application
    Filed: December 10, 2002
    Publication date: October 14, 2004
    Inventors: Alan D. Cetel, Dilip M. Shah
  • Patent number: 6742698
    Abstract: The present invention relates to a method for repairing components such as blades used in turbine engines. The method comprises the steps of placing a piece of refractory metal material over an area of the component to be repaired and depositing a repair filler metal material over the piece of refractory material in an amount sufficient to repair the component and welding the repair filler metal material in place. The refractory metal material may be selected from the group consisting of niobium, tantalum, molybdenum, tungsten, a metal having a melting point higher than the melting point of nickel, and alloys thereof and may be uncoated or coated.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: June 1, 2004
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, James T. Beals, Norman Pietruska, Edward R. Szela
  • Publication number: 20040020629
    Abstract: Concepts for fabricating improved cores for investment casting are described. The cores are composite which include refractory metal elements and ceramic elements. The refractory metal elements are provided to enhance the mechanical properties of the core and/or to permit the fabrication of cores having shapes and geometries that could not otherwise be achieved. In one embodiment, the entire core may be made of refractory metal components. The cores may be used to investment cast gas turbine superalloy components.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Applicant: United Technologies Corporation
    Inventors: Dilip M. Shah, James Thompson Beals, John Joseph Marcin, Stephen Douglas Murray
  • Patent number: 6671965
    Abstract: The present invention relates to a diamond tipped indenting tool for marking the surface of metal parts. The indenting tool comprises a shank having a tip end and a diamond affixed to the tip end by a braze material. The braze material preferably comprises a braze alloy which wets both the diamond and the material forming the shank. The diamond forms the point of the tool and is preferably a high quality single crystal diamond.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: January 6, 2004
    Assignee: United Technologies Corporation
    Inventors: Reade Clemens, Dilip M. Shah, David Lee Roe
  • Publication number: 20030226878
    Abstract: The present invention relates to a method for repairing components such as blades used in turbine engines. The method comprises the steps of placing a piece of refractory metal material over an area of the component to be repaired and depositing a repair filler metal material over the piece of refractory material in an amount sufficient to repair the component and welding the repair filler metal material in place. The refractory metal material may be selected from the group consisting of niobium, tantalum, molybdenum, tungsten, a metal having a melting point higher than the melting point of nickel, and alloys thereof and may be uncoated or coated.
    Type: Application
    Filed: June 10, 2002
    Publication date: December 11, 2003
    Inventors: Dilip M. Shah, James T. Beals, Norman Pietruska, Edward R. Szela
  • Publication number: 20030121159
    Abstract: The present invention relates to a diamond tipped indenting tool for marking the surface of metal parts. The indenting tool comprises a shank having a tip end and a diamond affixed to the tip end by a braze material. The braze material preferably comprises a braze alloy which wets both the diamond and the material forming the shank. The diamond forms the point of the tool and is preferably a high quality single crystal diamond.
    Type: Application
    Filed: December 28, 2001
    Publication date: July 3, 2003
    Inventors: Reade Clemens, Dilip M. Shah, David Lee Roe
  • Publication number: 20030075300
    Abstract: Concepts for fabricating improved cores for investment casting are described. The cores are composite which include refractory metal elements and ceramic elements. The refractory metal elements are provided to enhance the mechanical properties of the core and/or to permit the fabrication of cores having shapes and geometries that could not otherwise be achieved. In one embodiment, the entire core may be made of refractory metal components. The cores may be used to investment cast gas turbine superalloy components.
    Type: Application
    Filed: October 24, 2001
    Publication date: April 24, 2003
    Inventors: Dilip M. Shah, James Thompson Beals, John Joseph Marcin, Stephen Douglas Murray
  • Publication number: 20020130047
    Abstract: According to the invention, an article that is exposed to high temperature e.g., over 1000° C. during operation is disclosed. In one embodiment, a method for a gas turbine engine includes a directionally solidifed metallic substrate, e.g., a superalloy, which defines an airfoil, a root and a platform located between the blade and root. The platform has an underside adjacent the root, and a corrosion resistant overlay coating such as an MCrAlY or a noble metal containing aluminide or corrosion inhibiting ceramic is located on portions or the blade not previously covered with such coatings, e.g., the underside of the platform and the neck. The applied coating prevents corrosion and stress corrosion cracking of blade in these regions. Where the airfoil is also created, the airfoil coating may have a composition different from that of the coating on the underplatform surfaces.
    Type: Application
    Filed: January 29, 2002
    Publication date: September 19, 2002
    Applicant: United Technologies Corporation
    Inventors: William Patrick Allen, Walter E. Olson, Dilip M. Shah, Alan David Cetel
  • Patent number: 6435830
    Abstract: According to the invention, an article that is exposed to high temperatures, e.g., over 1000° C. during operation is disclosed. In one embodiment, a turbine blade for a gas turbine engine includes a directionally solidified metallic substrate, e.g., a superalloy, which defines an airfoil, a root and a platform located between the blade and root. The platform has an underside adjacent the root, and a corrosion resistant overlay coating such as an MCrAlY is located on the underside of the platform and the neck. The applied coating prevents corrosion and stress corrosion cracking of blade in these regions. Where the airfoil is also coated, the airfoil coating may have a composition different from that of the coating on the underplatform surfaces.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: August 20, 2002
    Assignee: United Technologies Corporation
    Inventors: William Patrick Allen, Walter E. Olson, Dilip M. Shah, Alan David Cetel
  • Patent number: 6270318
    Abstract: According to the invention, an article that is exposed to high temperatures, e.g., over 1000° C. during operation is disclosed. In one embodiment, a turbine blade for a gas turbine engine includes a directionally solidified metallic substrate, e.g., a superalloy, which defines an airfoil, a root and a platform located between the blade and root. The platform has an underside adjacent the root, and a corrosion resistant ceramic overlay coating such as a stabilized zirconia is located on the underside of the platform and the neck. The applied coating prevents corrosion and stress corrosion cracking of blades in these regions.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: August 7, 2001
    Assignee: United Technologies Corporation
    Inventors: Dilip M. Shah, Alan David Cetel