Patents by Inventor Dimitar V. Popmintchev

Dimitar V. Popmintchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10985523
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 20, 2021
    Assignee: The Regents of the University of Colorado
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Publication number: 20190372300
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: November 13, 2018
    Publication date: December 5, 2019
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 10128631
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 13, 2018
    Assignee: The Regents of the University of Colorado, a body
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Publication number: 20170222393
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 9627844
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: April 18, 2017
    Assignee: The Regents of the University of Colorado, a body
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Publication number: 20160315442
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: July 5, 2016
    Publication date: October 27, 2016
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn
  • Publication number: 20150063385
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn