Patents by Inventor Dimitri A. Antoniadis
Dimitri A. Antoniadis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11303316Abstract: An apparatus and method for wireless communication, and a method of fabricating the apparatus. The apparatus comprises two or more transceiver array groups, each transceiver array group comprising one or more radio frequency, RF, circuits, and one or more RF front end, RF FE, circuits; wherein the transceiver array groups are configured to operate at different frequencies; wherein the transceiver array groups are configured to be connected to one corresponding digital baseband processor; and wherein the transceiver array groups comprise at least one first transceiver array group configured to operate at cm wavelength or larger. Preferably, the transceiver array groups comprise at least one second transceiver array group configured to operate at mm wavelength.Type: GrantFiled: May 10, 2019Date of Patent: April 12, 2022Assignees: Nanyang Technological University, Massachusetts Institute of TechnologyInventors: Pilsoon Choi, Dimitri Antoniadis, Chirn Chye Boon, Eugene A. Fitzgerald
-
Publication number: 20210250057Abstract: An apparatus and method for wireless communication, and a method of fabricating the apparatus. The apparatus comprises two or more transceiver array groups, each transceiver array group comprising one or more radio frequency, RF, circuits, and one or more RF front end, RF FE, circuits; wherein the transceiver array groups are configured to operate at different frequencies; wherein the transceiver array groups are configured to be connected to one corresponding digital baseband processor; and wherein the transceiver array groups comprise at least one first transceiver array group configured to operate at cm wavelength or larger. Preferably, the transceiver array groups comprise at least one second transceiver array group configured to operate at mm wavelength.Type: ApplicationFiled: May 10, 2019Publication date: August 12, 2021Applicants: Nanyang Technological University, Massachusetts Institute of TechnologyInventors: Pilsoon Choi, Dimitri Antoniadis, Chirn Chye Boon, Eugene Fitzgerald
-
Patent number: 7390701Abstract: A multiple-gate FET structure includes a semiconductor substrate. A gate region is formed on the semiconductor substrate. The gate region comprises a gate portion and a channel portion. The gate portion has at least two opposite vertical surfaces adjacent to the channel portion. A source region abuts the gate region at one end, and a drain diffusion region abuts the gate region at the other end.Type: GrantFiled: March 23, 2005Date of Patent: June 24, 2008Assignee: Massachusetts Institute of TechnologyInventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri Antoniadis
-
Patent number: 7348259Abstract: A method of fabricating a semiconductor structure. According to one aspect of the invention, on a first semiconductor substrate, a first compositionally graded Si1-xGex buffer is deposited where the Ge composition x is increasing from about zero to a value less than about 20%. Then a first etch-stop Si1-yGey layer is deposited where the Ge composition y is larger than about 20% so that the layer is an effective etch-stop. A second etch-stop layer of strained Si is then grown. The deposited layer is bonded to a second substrate. After that the first substrate is removed to release said first etch-stop S1-yGey layer. The remaining structure is then removed in another step to release the second etch-stop layer. According to another aspect of the invention, a semiconductor structure is provided. The structure has a layer in which semiconductor devices are to be formed.Type: GrantFiled: January 3, 2005Date of Patent: March 25, 2008Assignee: Massachusetts Institute of TechnologyInventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis
-
Patent number: 7304336Abstract: A multiple-gate FET structure includes a semiconductor substrate. A gate region is formed on the semiconductor substrate. The gate region comprises a gate portion and a channel portion. The gate portion has at least two opposite vertical surfaces adjacent to the channel portion. A source region abuts the gate region at one end, and a drain diffusion region abuts the gate region at the other end.Type: GrantFiled: February 13, 2004Date of Patent: December 4, 2007Assignee: Massachusetts Institute of TechnologyInventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri Antoniadis
-
Patent number: 7074655Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.Type: GrantFiled: September 28, 2005Date of Patent: July 11, 2006Assignee: AmberWave Systems CorporationInventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
-
Publication number: 20060024869Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.Type: ApplicationFiled: September 28, 2005Publication date: February 2, 2006Applicant: AmberWave Systems CorporationInventors: Anthony Lochtefeld, Dimitri Antoniadis, Matthew Currie
-
Patent number: 6991972Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.Type: GrantFiled: October 22, 2003Date of Patent: January 31, 2006Assignee: AmberWave Systems CorporationInventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
-
Single metal gate material CMOS using strained si-silicon germanium heterojunction layered substrate
Publication number: 20050274978Abstract: Strained Si/strained SiGe dual-channel layer substrate provides mobility advantage and when used as a CMOS substrate enables single workfunction metal-gate electrode technology. A single metal electrode with workfunction of 4.5 eV produces near ideal CMOS performance on a dual-channel layer substrate that consists sequentially of a silicon wafer, an epitaxially grown 30% Ge relaxed SiGe layer, a compressively strained 60% Ge layer, and a tensile-strained Si cap layer.Type: ApplicationFiled: May 26, 2005Publication date: December 15, 2005Inventors: Dimitri Antoniadis, Judy Hoyt, Jongwan Jung, Shaofeng Yu -
Publication number: 20050202604Abstract: A multiple-gate FET structure includes a semiconductor substrate. A gate region is formed on the semiconductor substrate. The gate region comprises a gate portion and a channel portion. The gate portion has at least two opposite vertical surfaces adjacent to the channel portion. A source region abuts the gate region at one end, and a drain diffusion region abuts the gate region at the other end.Type: ApplicationFiled: March 23, 2005Publication date: September 15, 2005Inventors: Zhiyuan Cheng, Eugene Fitzgerald, Dimitri Antoniadis
-
Patent number: 6940089Abstract: A method of fabricating a semiconductor structure. According to one aspect of the invention, on a first semiconductor substrate, a first compositionally graded Si1-xGex buffer is deposited where the Ge composition x is increasing from about zero to a value less than about 20%. Then a first etch-stop Si1-yGey layer is deposited where the Ge composition y is larger than about 20% so that the layer is an effective etch-stop. A second etch-stop layer of strained Si is then grown. The deposited layer is bonded to a second substrate. After that the first substrate is removed to release said first etch-stop Si1-yGey layer. The remaining structure is then removed in another step to release the second etch-stop layer. According to another aspect of the invention, a semiconductor structure is provided. The structure has a layer in which semiconductor devices are to be formed.Type: GrantFiled: April 4, 2002Date of Patent: September 6, 2005Assignee: Massachusetts Institute of TechnologyInventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis
-
Patent number: 6921914Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1-xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1-yGey layer, a thin strained Si1-zGez layer and another relaxed Si1-yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1-yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1-yGey layer remains on the second substrate. In another exemplary embodiment, a graded Si1-xGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects. Hydrogen ions are introduced into the relaxed GaAs layer at the selected depth.Type: GrantFiled: March 17, 2004Date of Patent: July 26, 2005Assignee: Massachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Judy L. Hoyt
-
Publication number: 20050136624Abstract: A method of fabricating a semiconductor structure. According to one aspect of the invention, on a first semiconductor substrate, a first compositionally graded Si1-xGex buffer is deposited where the Ge composition x is increasing from about zero to a value less than about 20%. Then a first etch-stop Si1-yGey layer is deposited where the Ge composition y is larger than about 20% so that the layer is an effective etch-stop. A second etch-stop layer of strained Si is then grown. The deposited layer is bonded to a second substrate. After that the first substrate is removed to release said first etch-stop S1-yGey layer. The remaining structure is then removed in another step to release the second etch-stop layer. According to another aspect of the invention, a semiconductor structure is provided. The structure has a layer in which semiconductor devices are to be formed.Type: ApplicationFiled: January 3, 2005Publication date: June 23, 2005Applicant: Massachusetts Institute of TechnologyInventors: Zhiyuan Cheng, Eugene Fitzgerald, Dimitri Antoniadis
-
Publication number: 20050009288Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1-xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1-yGey layer, a thin strained Si1-zGez layer and another relaxed Si1-yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1-yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1-yGey layer remains on the second substrate. In another exemplary embodiment, a graded SixGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects. Hydrogen ions are introduced into the relaxed GaAs layer at the selected depth.Type: ApplicationFiled: March 17, 2004Publication date: January 13, 2005Applicant: Massachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene Fitzgerald, Dimitri Antoniadis, Judy Hoyt
-
Publication number: 20040227187Abstract: A multiple-gate FET structure includes a semiconductor substrate. A gate region is formed on the semiconductor substrate. The gate region comprises a gate portion and a channel portion. The gate portion has at least two opposite vertical surfaces adjacent to the channel portion. A source region abuts the gate region at one end, and a drain diffusion region abuts the gate region at the other end.Type: ApplicationFiled: February 13, 2004Publication date: November 18, 2004Inventors: Zhiyuan Cheng, Eugene A. Fitzgerald, Dimitri Antoniadis
-
Publication number: 20040173791Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1-xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1-yGey layer, a thin strained Si1-zGez layer and another relaxed Si1-yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1-yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1-yGey layer remains on the second substrate. In another exemplary embodiment, a graded Si1-xGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects. Hydrogen ions are introduced into the relaxed GaAs layer at the selected depth.Type: ApplicationFiled: March 17, 2004Publication date: September 9, 2004Applicant: Massachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Judy L. Hoyt
-
Publication number: 20040137685Abstract: In forming an electronic device, a semiconductor layer is pre-doped and a dopant distribution anneal is performed prior to gate definition. Alternatively, the gate is formed from a metal. Subsequently formed shallow sources and drains, therefore, are not affected by the gate annealing step.Type: ApplicationFiled: October 22, 2003Publication date: July 15, 2004Applicant: AmberWave Systems CorporationInventors: Anthony J. Lochtefeld, Dimitri Antoniadis, Matthew T. Currie
-
Patent number: 6737670Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1−xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1−yGey layer, a thin strained Si1−zGez layer and another relaxed Si1−yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1−yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1−yGey layer remains on the second substrate. In another exemplary embodiment, a graded Si1−xGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects.Type: GrantFiled: March 7, 2003Date of Patent: May 18, 2004Assignee: Massachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Judy L. Hoyt
-
Patent number: 6713326Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1−xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1−yGey layer, a thin strained Si1−zGez layer and another relaxed Si1−yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1−yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1−yGey layer remains on the second substrate. In another exemplary embodiment, a graded Si1−xGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects.Type: GrantFiled: March 4, 2003Date of Patent: March 30, 2004Assignee: Masachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Judy L. Hoyt
-
Publication number: 20030168654Abstract: A process for producing monocrystalline semiconductor layers. In an exemplary embodiment, a graded Si1−xGex (x increases from 0 to y) is deposited on a first silicon substrate, followed by deposition of a relaxed Si1−yGey layer, a thin strained Si1−zGez layer and another relaxed Si1−yGey layer. Hydrogen ions are then introduced into the strained SizGez layer. The relaxed Si1−yGey layer is bonded to a second oxidized substrate. An annealing treatment splits the bonded pair at the strained Si layer, such that the second relaxed Si1−yGey layer remains on the second substrate. In another exemplary embodiment, a graded Si1−xGex is deposited on a first silicon substrate, where the Ge concentration x is increased from 0 to 1. Then a relaxed GaAs layer is deposited on the relaxed Ge buffer. As the lattice constant of GaAs is close to that of Ge, GaAs has high quality with limited dislocation defects.Type: ApplicationFiled: March 7, 2003Publication date: September 11, 2003Applicant: Massachusetts Institute of TechnologyInventors: Zhi-Yuan Cheng, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Judy L. Hoyt