Patents by Inventor Dimitri SOCCOl

Dimitri SOCCOl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11525793
    Abstract: In an embodiment a method includes determining, for each capacitor element of a plurality of capacitor elements of a capacitor, an increase of a capacitance of a capacitor element caused by a decrease of a temperature of the capacitor and deriving a dew point from a temperature at which the increases of the capacitances or values corresponding to the increases of the capacitances exceed a predefined limit by generating a set of binary digits, each of the binary digits corresponding to one of the capacitor elements and indicating whether the capacitance of the capacitor element is within a predefined range, comparing sets of binary digits generated at different temperatures and determining a number of capacitor elements for which the corresponding binary digits of the sets are different and repeating the comparison for a sequence of sets generated at decreasing temperatures.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: December 13, 2022
    Assignee: SCIOSENSE B.V.
    Inventors: Dimitri Soccol, Viet Nguyen Hoang, David Van Steenwinckel, Roel Daamen, Pascal Bancken
  • Patent number: 11262325
    Abstract: A sensor semiconductor device comprises a transducer which comprises a capacitor with at least two electrodes. The transducer further comprises a polymer which is arranged between at least two electrodes of the capacitor, and a top surface of the transducer. The polymer is able to absorb water and the top surface is arranged such that it is exposed to the environment of the sensor semiconductor device. Furthermore, at least a part of the top surface is superhydrophobic and the sensor semiconductor device is capable of measuring the humidity of the environment of the sensor semiconductor device.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: March 1, 2022
    Assignee: SCIOSENSE B.V.
    Inventors: Micha In't Zandt, Frederik Willem Maurits Vanhelmont, Nebojsa Nenadovic, Dimitri Soccol
  • Publication number: 20210223193
    Abstract: In an embodiment a method includes determining, for each capacitor element of a plurality of capacitor elements of a capacitor, an increase of a capacitance of a capacitor element caused by a decrease of a temperature of the capacitor and deriving a dew point from a temperature at which the increases of the capacitances or values corresponding to the increases of the capacitances exceed a predefined limit by generating a set of binary digits, each of the binary digits corresponding to one of the capacitor elements and indicating whether the capacitance of the capacitor element is within a predefined range, comparing sets of binary digits generated at different temperatures and determining a number of capacitor elements for which the corresponding binary digits of the sets are different and repeating the comparison for a sequence of sets generated at decreasing temperatures.
    Type: Application
    Filed: April 8, 2021
    Publication date: July 22, 2021
    Inventors: Dimitri Soccol, Viet Nguyen Hoang, David Van Steenwinckel, Roel Daamen, Pascal Bancken
  • Patent number: 11002696
    Abstract: In an embodiment a dew point sensor device includes a semiconductor substrate, a top layer arranged on the semiconductor substrate, a Peltier element integrated in the semiconductor substrate, a temperature sensor, a capacitor arranged at a surface of the top layer facing away from the semiconductor substrate, the temperature sensor and the capacitor being arranged so that a temperature of the capacitor is measurable by the temperature sensor, wherein the capacitor includes a plurality of capacitor elements each having a capacitance, and an electronic circuit configured for an individual determination of the capacitances and a generation of a set of binary digits, each of the binary digits corresponding to one of the capacitor elements and indicating whether the capacitance of the capacitor element is within a predefined range.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: May 11, 2021
    Assignee: SCIOSENSE B.V.
    Inventors: Dimitri Soccol, Viet Nguyen Hoang, David Van Steenwinckel, Roel Daamen, Pascal Bancken
  • Patent number: 10921277
    Abstract: A sensor arrangement (10) comprises a capacitive sensor (11) with a first electrode line (12), a second electrode line (16) and a third electrode line (20) and a sensitive layer (30) arranged at the first, the second and the third electrode line (12, 16, 20). The sensor arrangement (10) comprises a readout circuit (50) that comprises a capacitance-to-digital converter (51), is coupled to the first, the second and the third electrode line (12, 16, 20) and is configured to generate a first measurement signal (S1) using the first and the second electrode line (12, 16) and a second measurement signal (S2) using at least the third electrode line (20).
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: February 16, 2021
    Assignee: AMS AG
    Inventors: Hilco Suy, Dimitri Soccol
  • Publication number: 20200064295
    Abstract: A sensor semiconductor device comprises a transducer which comprises a capacitor with at least two electrodes. The transducer further comprises a polymer which is arranged between at least two electrodes of the capacitor, and a top surface of the transducer. The polymer is able to absorb water and the top surface is arranged such that it is exposed to the environment of the sensor semiconductor device. Furthermore, at least a part of the top surface is superhydrophobic and the sensor semiconductor device is capable of measuring the humidity of the environment of the sensor semiconductor device.
    Type: Application
    Filed: May 4, 2018
    Publication date: February 27, 2020
    Inventors: Micha IN'T ZANDT, Frederik Willem Maurits VANHELMONT, Nebojsa NENADOVIC, Dimitri SOCCOL
  • Publication number: 20190094164
    Abstract: The dew point sensor device comprises a semiconductor substrate (1), a Peltier element (2), which may be integrated in the substrate (1), a temperature sensor (3), a capacitor (4) at an exposed surface (9) above the substrate (1) and in the vicinity of the temperature sensor (3), and an electronic circuit (5), which may also be integrated in the substrate (1). The capacitor (4) comprises a plurality of capacitor elements (40) each having a capacitance, and the electronic circuit (5) is provided for an individual determination of the capacitances. The dew point is determined by a measurement of the variation of the capacitances at decreasing temperatures and a measurement of the relevant temperature.
    Type: Application
    Filed: February 21, 2017
    Publication date: March 28, 2019
    Inventors: Dimitri SOCCOL, Viet NGUYEN HOANG, David VAN STEENWINCKEL, Roel DAAMEN, Pascal BANCKEN
  • Publication number: 20190041349
    Abstract: A sensor arrangement (10) comprises a capacitive sensor (11) with a first electrode line (12), a second electrode line (16) and a third electrode line (20) and a sensitive layer (30) arranged at the first, the second and the third electrode line (12, 16, 20). The sensor arrangement (10) comprises a readout circuit (50) that comprises a capacitance-to-digital converter (51), is coupled to the first, the second and the third electrode line (12, 16, 20) and is configured to generate a first measurement signal (S1) using the first and the second electrode line (12, 16) and a second measurement signal (S2) using at least the third electrode line (20).
    Type: Application
    Filed: February 7, 2017
    Publication date: February 7, 2019
    Inventors: Hilco SUY, Dimitri SOCCOL
  • Patent number: 9683099
    Abstract: Disclosed is an integrated circuit (100) comprising a semiconductor substrate (110) carrying a plurality of circuit elements (111); and a carbon dioxide sensor (120) over said semiconductor substrate, said sensor comprising a pair of electrodes (122, 124) laterally separated from each other; and a carbon dioxide (CO2) permeable polymer matrix (128) at least partially covering the pair of electrodes, said matrix encapsulating a liquid (126) comprising an organic alcohol and an organic amidine or guanidine base. A composition for forming such a CO2 sensor on the IC and a method of manufacturing such an IC are also disclosed.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: June 20, 2017
    Assignee: AMS INTERNATIONAL AG
    Inventors: Rafael Sablong, Aurelie Humbert, Bjorn Tuerlings, Cornelis Bastiaansen, Dirk Gravesteijn, Dimitri Soccol, Jan Kolijn
  • Patent number: 9683968
    Abstract: One example discloses a combination sensor, comprising: a pressure sensor having an actuator which has a first resonant frequency; a cavity, coupled to the pressure sensor and able to receive a substance; wherein the cavity, in an absence of the substance, has a second resonant frequency in response to excitation by the actuator; wherein the cavity, in a presence of the substance, has a third resonant frequency in response to excitation by the actuator; wherein the first resonant frequency differs from the second and third resonant frequencies; and a sensor circuit which outputs a substance detected signal in response to the third resonant frequency in the cavity.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: June 20, 2017
    Assignee: NXP B.V.
    Inventors: Dimitri Soccol, Annelies Falepin
  • Patent number: 9651514
    Abstract: Disclosed is a pH and conductivity sensor including a carrier comprising a plurality of conductive tracks and an exposed conductive area defining a reference electrode connected to a first track of said plurality of conductive tracks, a sensing device mounted on the carrier and connected to at least a second track of said plurality of conductive tracks, the sensing device including an exposed surface that is sensitive to H+ concentrations, and a plurality of electrodes adjacent to the exposed surface, an encapsulation covering the carrier, said encapsulation including a first cavity exposing a surface of the sensing device, and a second cavity exposing the exposed conductive area.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: May 16, 2017
    Assignee: NXP B.V.
    Inventors: Dimitri Soccol, Matthias Merz
  • Patent number: 9513247
    Abstract: An electrochemical sensor for sensing a target substance is disclosed. In one example, the sensor discloses an electrolyte matrix, wherein the matrix reposits an electrolyte; a working electrode coupled to the electrolyte matrix at a first location; a counter electrode coupled to the electrolyte matrix at a second location; an electrical circuit, coupled to the working electrode and the counter electrode, and capable of generating an output signal in response to an electrical current which flows between the working electrode and the counter electrode in response to a presence of the target substance.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: December 6, 2016
    Assignee: AMS INTERNATIONAL AG
    Inventors: Matthias Merz, Dimitri Soccol
  • Patent number: 9453807
    Abstract: In one example, a thermal conductivity gas sensor is disclosed. The sensor includes a sensing element and an amplification material coupled to the sensing element. The amplification material has a target gas dependent thermal diffusivity. The sensing element measures the thermal diffusivity of the amplification material to determine a target gas concentration.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: September 27, 2016
    Assignee: AMS INTERNATIONAL AG
    Inventors: Aurelie Humbert, Dimitri Soccol, Roel Daamen, Annelies Falepin
  • Patent number: 9395318
    Abstract: There is disclosed an electrochemical sensor device comprising: an integrated electrochemical sensor element having: a substrate; first and second electrodes formed on the upper surface of the substrate; and an electrolyte layer formed on the first and second electrodes so as to electrically contact both the first and second electrodes; and a sensor integrated circuit electrically connected to the first and second electrodes of the integrated electrochemical sensor element. The integrated electrochemical sensor element and the sensor integrated circuit are provided in a single package.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: July 19, 2016
    Assignee: AMS INTERNATIONAL AG
    Inventors: Matthias Merz, Dimitri Soccol
  • Publication number: 20150362393
    Abstract: One example discloses a combination sensor, comprising: a pressure sensor having an actuator which has a first resonant frequency; a cavity, coupled to the pressure sensor and able to receive a substance; wherein the cavity, in an absence of the substance, has a second resonant frequency in response to excitation by the actuator; wherein the cavity, in a presence of the substance, has a third resonant frequency in response to excitation by the actuator; wherein the first resonant frequency differs from the second and third resonant frequencies; and a sensor circuit which outputs a substance detected signal in response to the third resonant frequency in the cavity.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 17, 2015
    Inventors: Dimitri Soccol, Annelies Falepin
  • Publication number: 20150285750
    Abstract: In one example, a thermal conductivity gas sensor is disclosed. The sensor includes a sensing element and an amplification material coupled to the sensing element. The amplification material has a target gas dependent thermal diffusivity. The sensing element measures the thermal diffusivity of the amplification material to determine a target gas concentration.
    Type: Application
    Filed: April 8, 2014
    Publication date: October 8, 2015
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Dimitri Soccol, Roel Daamen, Annelies Falepin
  • Patent number: 9140678
    Abstract: An integrated circuit arrangement (100) is disclosed comprising a substrate (210); and a gas such as a CO2 sensor comprising spatially separated electrodes including at least an excitation electrode (132) and a sensing electrode (142); a volume (120) in contact with said pair of electrodes, said volume including a chemical compound for forming a reaction product with said gas in an acid-base reaction; a signal generator (212) conductively coupled to the excitation electrode and adapted to provide the excitation electrode with a microwave signal; and a signal detector (214) conductively coupled to the sensing electrode and adapted to detect a change in said microwave signal caused by a permittivity change in said volume, said permittivity change being caused by said reaction product. A device comprising such an IC arrangement and a method of sensing the presence of a gas using such an IC arrangement are also disclosed.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: September 22, 2015
    Assignee: NXP, B.V.
    Inventors: Dimitri Soccol, Youri Victorovitch Ponomarev, David van Steenwinckel
  • Publication number: 20150241375
    Abstract: An electrochemical sensor for sensing a target substance is disclosed. In one example, the sensor discloses an electrolyte matrix, wherein the matrix reposits an electrolyte; a working electrode coupled to the electrolyte matrix at a first location; a counter electrode coupled to the electrolyte matrix at a second location; an electrical circuit, coupled to the working electrode and the counter electrode, and capable of generating an output signal in response to an electrical current which flows between the working electrode and the counter electrode in response to a presence of the target substance.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 27, 2015
    Applicant: NXP B.V.
    Inventors: Matthias Merz, Dimitri Soccol
  • Patent number: 8994194
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: March 31, 2015
    Assignee: NXP, B.V.
    Inventors: David van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccol, Jan Leo Dominique Fransaer
  • Publication number: 20150084100
    Abstract: Disclosed is an integrated circuit (100) comprising a semiconductor substrate (110) carrying a plurality of circuit elements (111); and a carbon dioxide sensor (120) over said semiconductor substrate, said sensor comprising a pair of electrodes (122, 124) laterally separated from each other; and a carbon dioxide (CO2) permeable polymer matrix (128) at least partially covering the pair of electrodes, said matrix encapsulating a liquid (126) comprising an organic alcohol and an organic amidine or guanidine base. A composition for forming such a CO2 sensor on the IC and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 26, 2015
    Inventors: Rafael Sablong, Aurelie Humbert, Bjorn Tuerlings, Cornelis Bastiaansen, Dirk Gravesteijn, Dimitri Soccol, Jan Kolijn