Patents by Inventor Dimitri Yagodkin

Dimitri Yagodkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160285228
    Abstract: A high power single mode (“SM”) laser system includes an amplifier configured with a monolithic fiber to rod fiber waveguide which is structured with a multimode (“MM”) core and at least one cladding surrounding the core. The MM core is configured with a small diameter uniform input region receiving and guiding a SM signal light, a mode-transforming frustoconical core region expanding outwards from the input region and a relatively large diameter uniform output portion. The high power laser system is further structured with a MM pump light delivery fiber having a numerical aperture NA2, which is at most equal to that one of the output core portion. The amplifier and pump light output fiber traverse an unconfined delivery cable and terminate upstream from a mirror which is configured to focus the incident pump light into the core of the amplifier in a counter-propagating direction.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 29, 2016
    Applicant: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Igor Samartsev, Dimitri Yagodkin
  • Patent number: 9444215
    Abstract: A high power single mode (“SM”) laser system includes an amplifier configured with a monolithic fiber to rod fiber waveguide which is structured with a multimode (“MM”) core and at least one cladding surrounding the core. The MM core is configured with a small diameter uniform input region receiving and guiding a SM signal light, a mode-transforming frustoconical core region expanding outwards from the input region and a relatively large diameter uniform output portion. The high power laser system is further structured with a MM pump light delivery fiber having a numerical aperture NA2, which is at most equal to that one of the output core portion. The amplifier and pump light output fiber traverse an unconfined delivery cable and terminate upstream from a mirror which is configured to focus the incident pump light into the core of the amplifier in a counter-propagating direction.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: September 13, 2016
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Igor Samartsev, Dimitri Yagodkin
  • Patent number: 9140865
    Abstract: A fiber connector system provides a pigtailed monolithic terminal block of a fiber connector configured to alter a space distribution of laser output radiation. The output facet of the pigtailed monolithic terminal block is configured to alter the divergence of an output beam allowing collimation, focusing, or any desired distribution without additional optical circuitry. The fiber connector system is operative to couple two fibers from respective different fiber devices and allows positioning additional optical components there between.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: September 22, 2015
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Valentin Fomin, Dimitri Yagodkin, Alexander Makagon
  • Patent number: 8724945
    Abstract: The present disclosure is a system for the protection of a fiber within a laser system. The system has a water-cooled housing supporting a termination block, which is operative to shield a protective layer of a delivery fiber from back-reflected beams of light. The termination block is manufactured from quartz and is frustconical in configuration and fuseable to the delivery fiber. The delivery fiber has a polymeric protective layer with an acceptance end and a delivery end, and passes through a washer contained within the housing; the washer has a dielectric reflective coating. The system has at least one terminal block connector which further comprises a cone termination block, a reflector, and a set of light guards. The cone termination block is spliced to an output end of the delivery fiber and produces an angle ? so as to reduce propagation of back-reflected light. The reflector is positioned so as to block additional back-reflected light from the protective layer of the delivery fiber.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: May 13, 2014
    Assignee: IPG Photonics Corporation
    Inventors: Valentin P. Gapontsev, Alexander Makagon, Dimitri Yagodkin
  • Patent number: 8254417
    Abstract: The present disclosure relates to a modular fiber laser system operative to controllably guide a beam which is launched from a feeding fiber into a process fiber so that the high-aperture component is coupled and guided in cladding of the process fiber, and a low-aperture component is coupled into the core of the fiber. The laser system further has a reflective element configured with light-reflecting and light-transmitting portions. The high-aperture component at least partially decouples from the cladding into the core so that the core radiates the high-aperture and low-aperture components. The high-aperture component is incident upon the light-reflecting portion and backreflected into the process fiber so that a sensor array, which is located between the feeding and process fibers, detects the reflected light.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: August 28, 2012
    Assignee: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Valentin Fomin, Alexander Dronov, Dimitri Yagodkin
  • Publication number: 20120008648
    Abstract: The present disclosure is a system for the protection of a fiber within a laser system. The system has a water-cooled housing supporting a termination block, which is operative to shield a protective layer of a delivery fiber from back-reflected beams of light. The termination block is manufactured from quartz and is frustconical in configuration and fuseable to the delivery fiber. The delivery fiber has a polymeric protective layer with an acceptance end and a delivery end, and passes through a washer contained within the housing; the washer has a dielectric reflective coating. The system has at least one terminal block connector which further comprises a cone termination block, a reflector, and a set of light guards. The cone termination block is spliced to an output end of the delivery fiber and produces an angle ? so as to reduce propagation of back-reflected light. The reflector is positioned so as to block additional back-reflected light from the protective layer of the delivery fiber.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Valentin P. Gapontsev, Alexander Makagon, Dimitri Yagodkin
  • Publication number: 20110305249
    Abstract: The present disclosure relates to a modular fiber laser system operative to controllably guide a beam which is launched from a feeding fiber into a process fiber so that the high-aperture component is coupled and guided in cladding of the process fiber, and a low-aperture component is coupled into the core of the fiber. The laser system further has a reflective element configured with light-reflecting and light-transmitting portions. The high-aperture component at least partially decouples from the cladding into the core so that the core radiates the high-aperture and low-aperture components. The high-aperture component is incident upon the light-reflecting portion and backreflected into the process fiber so that a sensor array, which is located between the feeding and process fibers, detects the reflected light.
    Type: Application
    Filed: June 14, 2010
    Publication date: December 15, 2011
    Applicant: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Valentin Fomin, Alexander Dronov, Dimitri Yagodkin
  • Patent number: 7876805
    Abstract: A dynamic compensator for a fiber optic cable having a jacket which is centered along a longitudinal axis, an elongated buffer tube surrounded by the jacket, and an elongated fiber surrounded by the buffer tube and dimensioned to move radially inwards and outwards within the buffer tube. The dynamic compensator includes a cable holder configured to receive and loop a portion of the fiber optic cable so that when the jacket elongates, the fiber extending along the loop is displaced radially inwards so as to release stresses upon end portions of the fiber, and when the jacket shrinks, the fiber is displaced radially outward to increase stresses upon the end portions of the fiber.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 25, 2011
    Inventors: Valentin P Gapontsev, Valentin Fomin, Andrey Abramov, Dimitri Yagodkin
  • Publication number: 20100322268
    Abstract: A dynamic compensator for a fiber optic cable having a jacket which is centered along a longitudinal axis, an elongated buffer tube surrounded by the jacket, and an elongated fiber surrounded by the buffer tube and dimensioned to move radially inwards and outwards within the buffer tube. The dynamic compensator includes a cable holder configured to receive and loop a portion of the fiber optic cable so that when the jacket elongates, the fiber extending along the loop is displaced radially inwards so as to release stresses upon end portions of the fiber, and when the jacket shrinks, the fiber is displaced radially outward to increase stresses upon the end portions of the fiber.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Applicant: IPG Photonics Corporation
    Inventors: Valentin P. Gapontsev, Andrey Abramov, Valentin Fomin, Dimitri Yagodkin