Patents by Inventor Dimitri Yellachich

Dimitri Yellachich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10022269
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: July 17, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Publication number: 20160262933
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 15, 2016
    Inventors: MARK BLUMENKRANZ, DANIEL V. PALANKER, DIMITRI YELLACHICH
  • Publication number: 20140081248
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Inventors: Mark Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Patent number: 8616216
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: December 31, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Patent number: 8409180
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: April 2, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Publication number: 20100256615
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Application
    Filed: June 11, 2010
    Publication date: October 7, 2010
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Publication number: 20100249760
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Application
    Filed: June 11, 2010
    Publication date: September 30, 2010
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Patent number: 7766903
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: August 3, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark S. Blumenkranz, Daniel V. Palanker, Dimitri Yellachich
  • Publication number: 20060100677
    Abstract: Patterned laser treatment of the retina is provided. A visible alignment pattern having at least two separated spots is projected onto the retina. By triggering a laser subsystem, doses of laser energy are automatically provided to at least two treatment locations coincident with the alignment spots. All of the doses of laser energy may be delivered in less than about 1 second, which is a typical eye fixation time. A scanner can be used to sequentially move an alignment beam from spot to spot on the retina and to move a treatment laser beam from location to location on the retina.
    Type: Application
    Filed: December 24, 2003
    Publication date: May 11, 2006
    Inventors: Mark Blumenkranz, Daniel Palanker, Dimitri Yellachich
  • Publication number: 20050214345
    Abstract: A retinal implant is provided that uses an artificial biocompatible material as a support material on which retinal pigment epithelial cells, iris pigment epithelial cells, and/or stem cells can be deposited either in situ or in vivo. The support material has a surface topology that is rough to promote cell adhesion, has surface pits to allow pigment cells to grow into, and has pores to allow for proper diffusion of materials. The support material serves as a substrate for cell growth and as a patch for damaged basement membrane (Bruch's membrane). This cell-coated membrane or pigment cell-enriched membrane is surgically positioned in the sub-retinal space to rescue or restore photoreceptor cell function that may be damaged or threatened by degenerative diseases of the eye, such as age-related macular degeneration.
    Type: Application
    Filed: February 18, 2005
    Publication date: September 29, 2005
    Inventors: Theodore Leng, Dimitri Yellachich, Philip Huie, Jaan Noolandi, Harvey Fishman