Patents by Inventor Dimitrios A. Hatzikakidis

Dimitrios A. Hatzikakidis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9527361
    Abstract: A chamber cluster (1) for a co-axial damper unit, used in a suspension module, that is driven by the motion of a torsion bar (2), that transmits the rotational motion through gears (3), (4), (5) to a wing (6), enclosed within. The rotary motion of the wing (6), in a viscous medium in a volumous space (19), sealed by seals (10), (11), achieves damping by enclosing the wing (6), inside a W-shaped flexible component (7), and by the use of a two-phase viscous fluid, that is subject to a viscosity variation, by means of electromagnetic control through a device (15). Several chamber cluster (1) units connected via a bulkhead (20), create an assembly forming the co-axial damper unit, thus a cluster (1) of cluster units (e.g., 3, 4, 5, 6), for use in a suspension module.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 27, 2016
    Inventor: Dimitrios Hatzikakidis
  • Patent number: 9415815
    Abstract: A system using pairs of symmetrical aerodynamic devices (1) and (2) that affects the axial, the lateral response and handling of road vehicles. The symmetrical, dihedral revolving surfaces are controlled in an active and adaptive way, and are deployed independently, or in tandem, as a result of the drivers' control inputs (steering and braking), affecting the formation of the trailing vortices generated by the vehicle. Depending on the rotation of the devices, about axes (16) and (17), the concave and/or the convex sides of the aerodynamic surfaces, which are created by the dihedral angle (9), are exposed to the on-coming air flow. Their angular positioning, their orientation, and the semi-permeable condition of their central cavities (13), via the central cavity relief openings (11) and holes (14), determine the generation of drag and side forces differentially, by affecting the formation of the trailing vortices, and thus affecting the vehicles' handling.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 16, 2016
    Inventor: Dimitrios A. Hatzikakidis
  • Publication number: 20150232136
    Abstract: A system using pairs of symmetrical aerodynamic devices (1) and (2) that affects the axial, the lateral response and handling of road vehicles. The symmetrical, dihedral revolving surfaces are controlled in an active and adaptive way, and are deployed independently, or in tandem, as a result of the drivers control inputs (steering and braking), affecting the formation of the trailing vortices generated by the vehicle. Depending on the rotation of the devices, about axes (16) and (17), the concave and/or the convex sides of the aerodynamic surfaces, which are created by the dihedral angle (9), are exposed to the on-coming air flow. Their angular positioning, their orientation, and the semi-permeable condition of their central cavities (13), via the central cavity relief openings (11) and holes (14), determine the generation of drag and side forces differentially, by affecting the formation of the trailing vortices, and thus affecting the vehicles' handling.
    Type: Application
    Filed: October 22, 2014
    Publication date: August 20, 2015
    Inventor: Dimitrios A. Hatzikakidis
  • Publication number: 20140361474
    Abstract: A chamber cluster (1) for a co-axial damper unit, used in a suspension module, that is driven by the motion of a torsion bar (2), that transmits the rotational motion through gears (3), (4), (5) to a wing (6), enclosed within. The rotary motion of the wing (6), in a viscous medium in a volumous space (19), sealed by seals (10), (11), achieves damping by enclosing the wing (6), inside a W-shaped flexible component (7), and by the use of a two-phase viscous fluid, that is subject to a viscosity variation, by means of electromagnetic control through a device (15). Several chamber cluster (1) units connected via a bulkhead (20), create an assembly forming the co-axial damper unit, for use in a suspension module.
    Type: Application
    Filed: December 28, 2012
    Publication date: December 11, 2014
    Inventor: Dimitrios Hatzikakidis
  • Patent number: 8870264
    Abstract: A system using pairs of symmetrical aerodynamic devices (1) and (2) that affects the axial, the lateral response and handling of road vehicles. The symmetrical, dihedral revolving surfaces are controlled in an active and adaptive way, and are deployed independently, or in tandem, as a result of the drivers' control inputs (steering and braking), affecting the formation of the trailing vortices generated by the vehicle. Depending on the rotation of the devices, about axes (16) and (17), the concave and/or the convex sides of the aerodynamic surfaces, which are created by the dihedral angle (9), are exposed to the on-coming air flow. Their angular positioning, their orientation, and the semi-permeable condition of their central cavities (13), via the central cavity relief openings (11) and holes (14), determine the generation of drag and side forces differentially, by affecting the formation of the trailing vortices, and thus affecting the vehicles' handling.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 28, 2014
    Inventor: Dimitrios A. Hatzikakidis
  • Publication number: 20130119702
    Abstract: A system using pairs of symmetrical aerodynamic devices (1) and (2) that affects the axial, the lateral response and handling of road vehicles. The symmetrical, dihedral revolving surfaces are controlled in an active and adaptive way, and are deployed independently, or in tandem, as a result of the drivers' control inputs (steering and braking), affecting the formation of the trailing vortices generated by the vehicle. Depending on the rotation of the devices, about axes (16) and (17), the concave and/or the convex sides of the aerodynamic surfaces, which are created by the dihedral angle (9), are exposed to the on-coming air flow. Their angular positioning, their orientation, and the semi-permeable condition of their central cavities (13), via the central cavity relief openings (11) and holes (14), determine the generation of drag and side forces differentially, by affecting the formation of the trailing vortices, and thus affecting the vehicles' handling.
    Type: Application
    Filed: April 8, 2011
    Publication date: May 16, 2013
    Inventor: Dimitrios A. Hatzikakidis
  • Patent number: 8083245
    Abstract: A chassis system and a suspension module for vehicles having wheel subsystems incorporates a lateral torsion bar and a co-axial enveloping damper unit, featuring active-adaptive suspension characteristics. Pre-fabricated suspension modules are situated inside respective box-structures, connected via wheelbase and track members, allowing the storage of heavy elements (e.g., batteries or fuel-cells) at the chassis. The robust and self-carrying chassis is enhanced, using upper body members, in terms of structural rigidity, for a given wheelbase, achieving high impact-energy absorbtion. The suspension arms incorporate upper and lower members, articulation, connect internally or externally to the suspension module, and transmit drive and brake forces to the wheels.
    Type: Grant
    Filed: December 26, 2010
    Date of Patent: December 27, 2011
    Inventor: Dimitrios A. Hatzikakidis
  • Publication number: 20110109052
    Abstract: A chassis system and a suspension module for vehicles having wheel subsystems incorporates a lateral torsion bar and a co-axial enveloping damper unit, featuring active-adaptive suspension characteristics. Pre-fabricated suspension modules are situated inside respective box-structures, connected via wheelbase and track members, allowing the storage of heavy elements (e.g., batteries or fuel-cells) at the chassis. The robust and self-carrying chassis is enhanced, using upper body members, in terms of structural rigidity, for a given wheelbase, achieving high impact-energy absorbtion. The suspension arms incorporate upper and lower members, articulation, connect internally or externally to the suspension module, and transmit drive and brake forces to the wheels.
    Type: Application
    Filed: December 26, 2010
    Publication date: May 12, 2011
    Inventor: Dimitrios A. Hatzikakidis