Patents by Inventor Dinesh Bharadia

Dinesh Bharadia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170264420
    Abstract: A system for self-interference canceller tuning includes a transmit coupler that creates a sampled analog transmit signal; an analog self-interference canceller that transforms the sampled analog transmit signal to an analog self-interference cancellation signal according to a set of tuning parameters, the set of tuning parameters comprising complex weights for a set of taps of the analog self-interference canceller; a tuning circuit that calculates the set of tuning parameters, and applies the set of tuning parameters to the analog self-interference canceller based on component calibration data of the analog self-interference canceller; and a receive coupler that combines the analog self-interference cancellation signal with the analog receive signal to reduce self-interference in the analog receive signal.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 14, 2017
    Inventors: Dinesh Bharadia, Jung-Il Choi, Mayank Jain
  • Publication number: 20170257180
    Abstract: A system that incorporates the subject disclosure may include, for example, determining an interference based on a channel gain for each signal of a group of signals received at a receiver from a group of transmitters. A determination is made of an interference value based on a group of interference signals received at a receiver from a group of transmitters, wherein the interference value is based on channel gains that are estimated for the group of transmitters, and wherein a portion of the interference is self-interference generated from transmitting and receiving at a same time. One of an analog time domain cancellation, a digital time domain cancellation or both, is performed responsive to a determination that the interference value does not satisfy a threshold range of an analog-to-digital converter of the receiver. Other embodiments are disclosed.
    Type: Application
    Filed: May 23, 2017
    Publication date: September 7, 2017
    Inventors: Vaneet Aggarwal, Dinesh Bharadia, Rittwik Jana, Christopher W. Rice, Nemmara K. Shankaranarayanan
  • Patent number: 9712312
    Abstract: A method for self-interference canceller tuning for a near band radio includes receiving, in a first frequency band, an RF transmit signal of the near band radio; receiving, in a second frequency band, an RF receive signal of the near band radio; generating a self-interference cancellation signal from the RF transmit signal based on a set of configuration parameters; combining the self-interference cancellation signal with the RF receive signal to create a composite receive signal; and adapting the set of configuration parameters based on the compo-site receive signal.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: July 18, 2017
    Assignee: Kumu Networks, Inc.
    Inventors: Jung-Il Choi, Mayank Jain, Dinesh Bharadia, Jeffrey Mehlman, Steven Hong
  • Patent number: 9698860
    Abstract: A method for tuning an analog self-interference canceller includes detecting a tuning trigger, calculating a set of tuning parameters (the tuning parameters including complex weights for a set of taps of the analog self-interference canceller) in response to the tuning trigger, and applying the set of tuning parameters based on component calibration data.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: July 4, 2017
    Assignee: Kumu Networks, Inc.
    Inventors: Dinesh Bharadia, Jung-Il Choi, Mayank Jain
  • Publication number: 20170187513
    Abstract: A wireless communication device includes, in part, an analog interference cancellation circuit and a controller. The analog cancellation circuit includes a multitude of delay paths each including a delay element and a variable attenuator. The controller dynamically varies the attenuation level of each of the variable attenuators in accordance with the frequency response characteristic of that attenuator to remove a portion of a self-interference signal present in a signal received by the device. The device measures the frequency response characteristic of the communication channel, used in determining the attenuation levels, via one or more preamble symbols. A second portion of the self-interference signal is removed by the device using a multitude of samples of a transmitted signal and a multitude of samples of a signal to be transmitted.
    Type: Application
    Filed: August 11, 2014
    Publication date: June 29, 2017
    Inventors: Dinesh BHARADIA, Sachin KATTI, Emily McMILIN
  • Patent number: 9692540
    Abstract: A system that incorporates the subject disclosure may include, for example, determining an interference based on a channel gain for each signal of a group of signals received at a receiver from a group of transmitters. A determination is made as to whether the interference satisfies a threshold range of an analog-to-digital converter of the receiver for each of the group of transmitters. An analog time domain cancellation is performed responsive to a determination that the interference does not satisfy the threshold range, and a digital time domain cancellation is performed responsive to a determination that the interference satisfies the threshold range. Other embodiments are disclosed.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: June 27, 2017
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Vaneet Aggarwal, Dinesh Bharadia, Rittwik Jana, Christopher W. Rice, Nemmara K. Shankaranarayanan
  • Publication number: 20170090026
    Abstract: Techniques for a motion tracing device using radio frequency signals are presented. The motion tracing device utilizes radio frequency signals, such as WiFi to identify moving objects and trace their motion. Methods and apparatus are defined that can measure multiple WiFi backscatter signals and identify the backscatter signals that correspond to moving objects. In addition, motion of a plurality of moving objects can be detected and traced for a predefined duration of time.
    Type: Application
    Filed: May 4, 2015
    Publication date: March 30, 2017
    Inventors: Kiran Joshi, Dinesh Bharadia, Sachin Katti, Manikanta Kotaru
  • Publication number: 20170054522
    Abstract: A system that incorporates the subject disclosure may include, for example, determining an interference based on a channel gain for each signal of a group of signals received at a receiver from a group of transmitters. A determination is made as to whether the interference satisfies a threshold range of an analog-to-digital converter of the receiver for each of the group of transmitters. An analog time domain cancellation is performed responsive to a determination that the interference does not satisfy the threshold range, and a digital time domain cancellation is performed responsive to a determination that the interference satisfies the threshold range. Other embodiments are disclosed.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 23, 2017
    Inventors: VANEET AGGARWAL, DINESH BHARADIA, RITTWIK JANA, CHRISTOPHER W. RICE, NEMMARA K. SHANKARANARAYANAN
  • Patent number: 9455761
    Abstract: A system for multi-rate digital self-interference cancellation including a signal component generation system coupled to a digital transmit signal of a communication system that generates a set of signal components from the digital transmit signal; a multi-rate adaptive filter that transforms the set of signal components into a digital self-interference cancellation signal, according to a transform configuration, to form an interference-reduced receive signal; and a transform adaptor that dynamically sets the transform configuration in response to changes in the interference-reduced receive signal.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: September 27, 2016
    Assignee: Kumu Networks, Inc.
    Inventors: Dinesh Bharadia, Jung-Il Choi, Mayank Jain, Rajendra Tushar Moori
  • Patent number: 9450785
    Abstract: A system that incorporates the subject disclosure may include, for example, determining an interference based on a channel gain for each signal of a group of signals received at a receiver from a group of transmitters. A determination is made as to whether the interference satisfies a threshold range of an analog-to-digital converter of the receiver for each of the group of transmitters. An analog time domain cancellation is performed responsive to a determination that the interference does not satisfy the threshold range, and a digital time domain cancellation is performed responsive to a determination that the interference satisfies the threshold range. Other embodiments are disclosed.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: September 20, 2016
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Vaneet Aggarwal, Dinesh Bharadia, Rittwik Jana, Christopher W. Rice, Nemmara K. Shankaranarayanan
  • Publication number: 20160266245
    Abstract: Techniques for estimating one or more backscatter signals reflected from one or more objects are disclosed. In one example, a backscatter sensor includes, in part, a receiver for receiving a composite signal comprising one or more reflections of a transmitted signal, each reflection being reflected by one of a plurality of objects; and a processor configured to estimate at least a first backscatter component of the composite signal using a progressive interference cancellation technique. The first backscatter component of the composite signal corresponds to a reflection of the transmitted signal from a first object. In one embodiment, the backscatter sensor includes multiple receivers and/or one or more transmitters.
    Type: Application
    Filed: November 14, 2014
    Publication date: September 15, 2016
    Inventors: Dinesh BHARADIA, Kiran JOSHI, Sachin KATTI
  • Publication number: 20160226653
    Abstract: A MIMO wireless communication device includes, in part, a first transmit path adapted to transmit a first transmit signal from a first antenna, a second transmit path adapted to transmit a second transmit signal from a second antenna, a first receive path adapted to receive a first receive signal, an interference cancellation circuit and a controller. The cancellation circuit includes a cascaded filter structure each filter including a multitude of filter taps each including a variable element. The controller dynamically varies a value applied to each of the plurality of variable elements in accordance with frequency response characteristics of the variable element to remove a portion of a self-interference and/or cross-talk interference signal present in a signal received by the device.
    Type: Application
    Filed: September 29, 2014
    Publication date: August 4, 2016
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dinesh BHARADIA, Sachin KATTI
  • Publication number: 20160142096
    Abstract: A system for multi-rate digital self-interference cancellation including a signal component generation system coupled to a digital transmit signal of a communication system that generates a set of signal components from the digital transmit signal; a multi-rate adaptive filter that transforms the set of signal components into a digital self-interference cancellation signal, according to a transform configuration, to form an interference-reduced receive signal; and a transform adaptor that dynamically sets the transform configuration in response to changes in the interference-reduced receive signal.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 19, 2016
    Inventors: Dinesh Bharadia, Jung-II Choi, Mayank Jain, Rajendra Tushar Moori
  • Patent number: 9337885
    Abstract: A system for hybrid self-interference cancellation includes a transmit coupler that samples an RF transmit signal, a RF self-interference canceller that transforms the sampled RF transmit signal to an RF self-interference cancellation signal, an IF self-interference canceller that transforms a downconverted version of the RF transmit signal to an ISRF self-interference cancellation signal, and a receive coupler that combines the RF and ISRF self-interference cancellation signals with an RF receive signal.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: May 10, 2016
    Assignee: Kumu Networks, Inc.
    Inventors: Jeffrey Mehlman, Mayank Jain, Jung-II Choi, Dinesh Bharadia
  • Patent number: 9331737
    Abstract: A wireless communication device includes, in part, at least one antenna for receiving or transmitting a signal, and a cancelation circuit adapted to cancel or reduce the self-interference signal. The cancelation circuit includes, in part, a control block, N delay and attenuation paths, a combiner, and a subtractor. Each path includes a delay element and a variable attenuator whose attenuation level varies in response to a control signal generated by the control block. Each path receives a sample of the transmit signal and generates a delayed and attenuated (weighted) version of the sample signal. The combiner combines the N delayed and weighted versions of the sample signal to construct a signal representative of the self-interference signal. The subtractor subtracts the constructed signal from the received signal thereby the cancel or reduce the self-interference signal therefrom.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: May 3, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steven Hong, Jeff Mehlman, Dinesh Bharadia, Sachin Katti
  • Patent number: 9276682
    Abstract: A system for multi-rate digital self-interference cancellation including a signal component generation system coupled to a digital transmit signal of a communication system that generates a set of signal components from the digital transmit signal; a multi-rate adaptive filter that transforms the set of signal components into a digital self-interference cancellation signal, according to a transform configuration, to form an interference-reduced receive signal; and a transform adaptor that dynamically sets the transform configuration in response to changes in the interference-reduced receive signal.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: March 1, 2016
    Assignee: KUMU Networks, Inc.
    Inventors: Dinesh Bharadia, Jung-Il Choi, Mayank Jain, Rajendra Tushar Moorti
  • Publication number: 20160050086
    Abstract: A system that incorporates the subject disclosure may include, for example, determining an interference based on a channel gain for each signal of a group of signals received at a receiver from a group of transmitters. A determination is made as to whether the interference satisfies a threshold range of an analog-to-digital converter of the receiver for each of the group of transmitters. An analog time domain cancellation is performed responsive to a determination that the interference does not satisfy the threshold range, and a digital time domain cancellation is performed responsive to a determination that the interference satisfies the threshold range. Other embodiments are disclosed.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Inventors: Vaneet Aggarwal, Dinesh Bharadia, Rittwik Jana, Christopher W. Rice, Nemmara K. Shankaranarayanan
  • Patent number: 9203655
    Abstract: A system that incorporates the subject disclosure may include, for example, determining channel gains for a group of transmitters based on transmitted training symbols; and performing analog time domain cancellation and digital time domain cancellation responsive to a determination that a total interference does not satisfy a threshold range of the analog-to-digital converter, where the total interference is determined based on the channel gains. Other embodiments are disclosed.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: December 1, 2015
    Assignee: AT&T Intellectual Property I, LP
    Inventors: Vaneet Aggarwal, Dinesh Bharadia, Rittwik Jana, Christopher W. Rice, Nemmara K. Shankaranarayanan
  • Publication number: 20150341125
    Abstract: A system for multi-rate digital self-interference cancellation including a signal component generation system coupled to a digital transmit signal of a communication system that generates a set of signal components from the digital transmit signal; a multi-rate adaptive filter that transforms the set of signal components into a digital self-interference cancellation signal, according to a transform configuration, to form an interference-reduced receive signal; and a transform adaptor that dynamically sets the transform configuration in response to changes in the interference-reduced receive signal.
    Type: Application
    Filed: May 26, 2015
    Publication date: November 26, 2015
    Inventors: Dinesh Bharadia, Jung-Il Choi, Mayank Jain, Rajendra Tushar Moorti
  • Publication number: 20150333847
    Abstract: A system for frequency-isolated self-interference cancellation includes a transmit coupler, that samples an RF transmit signal to create a sampled RF transmit signal having a first RF carrier frequency, an RF self-interference canceller that transforms the sampled RF transmit signal to an RF self-interference cancellation signal, a receive coupler, that combines the RF self-interference cancellation signal with an RF receive signal to form a reduced-interference receive signal, and a frequency shifter.
    Type: Application
    Filed: July 29, 2015
    Publication date: November 19, 2015
    Inventors: Dinesh Bharadia, Jeffrey Mehlman, Wilhelm Steffen Hahn