Patents by Inventor Ding An

Ding An has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12252704
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: March 18, 2025
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Patent number: 12128113
    Abstract: The invention relates to mRNA therapy for the treatment of Alagille syndrome (ALGS), mRNAs for use in the invention, when administered in vivo, encode JAGGED 1 (JAG1), isoforms thereof functional fragments thereof, and fusion proteins comprising JAG1, mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of JAG1 expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient JAG1 activity in subjects.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 29, 2024
    Assignee: ModernaTX, Inc.
    Inventors: Kerry Benenato, Stephen Hoge, Paolo Martini, Iain Mcfadyen, Vladimir Presnyak, Ding An, Ellalahewage Sathyajith Kumarasinghe
  • Patent number: 11939601
    Abstract: This disclosure relates to mRNA therapy for the treatment of hyperphenylalaninemias such as phenylketonuria (PKU). mRNAs for use in the invention, when administered in vivo, encode human phenylalanine hydroxylase (PAH), functional fragments thereof (e.g., those comprising the catalytic domain or the catalytic domain and the tetramerization domains), and fusion proteins comprising PAH. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PAH expression and/or activity in subjects. mRNA therapies of the invention further decrease abnormal accumulation of phenylalanine associated with deficient PAH activity in subjects.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: March 26, 2024
    Assignee: ModernaTX, Inc.
    Inventors: Raj Rajendran, Patrick Finn, Paolo G. V. Martini, Ding An, Athanasios Dousis, Kanchana Ravichandran
  • Publication number: 20210269830
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Application
    Filed: January 21, 2021
    Publication date: September 2, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Patent number: 11001861
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 11, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Publication number: 20210040456
    Abstract: This disclosure relates to mRNA therapy for the treatment of hyperphenylalaninemias such as phenylketonuria (PKU). mRNAs for use in the invention, when administered in vivo, encode human phenylalanine hydroxylase (PAH), functional fragments thereof (e.g., those comprising the catalytic domain or the catalytic domain and the tetramerization domains), and fusion proteins comprising PAH. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PAH expression and/or activity in subjects. mRNA therapies of the invention further decrease abnormal accumulation of phenylalanine associated with deficient PAH activity in subjects.
    Type: Application
    Filed: November 21, 2018
    Publication date: February 11, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Raj Rajendran, Patrick Finn, Paolo G.V. Martini, Ding An, Athanasios Dousis, Kanchana Ravichandran
  • Publication number: 20190300906
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Application
    Filed: May 18, 2017
    Publication date: October 3, 2019
    Applicant: ModernaTX, Inc.
    Inventors: Paolo MARTINI, Stephen HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain McFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Ding AN, Staci SABNIS
  • Publication number: 20190275170
    Abstract: The invention relates to mRNA therapy for the treatment of Alagille syndrome (ALGS), mRNAs for use in the invention, when administered in vivo, encode JAGGED 1 (JAG 1), isoforms thereof functional fragments thereof, and fusion proteins comprising JAG1, mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of JAG1 expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient JAG1 activity in subjects.
    Type: Application
    Filed: May 18, 2017
    Publication date: September 12, 2019
    Applicant: ModernaTX, Inc.
    Inventors: Kerry Benenato, Stephen Hoge, Paolo Martini, Iain Mcfadyen, Vladimir Presnyak, Ding An, Ellalahewage Sathyajith Kumarasinghe