Patents by Inventor Ding-Kang Shih

Ding-Kang Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210272849
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20210210608
    Abstract: Examples of an integrated circuit with an interface between a source/drain feature and a contact and examples of a method for forming the integrated circuit are provided herein. In some examples, a substrate is received having a source/drain feature disposed on the substrate. The source/drain feature includes a first semiconductor element and a second semiconductor element. The first semiconductor element of the source/drain feature is oxidized to produce an oxide of the first semiconductor element on the source/drain feature and a region of the source/drain feature with a greater concentration of the second semiconductor element than a remainder of the source/drain feature. The oxide of the first semiconductor element is removed, and a contact is formed that is electrically coupled to the source/drain feature. In some such embodiments, the first semiconductor element includes silicon and the second semiconductor element includes germanium.
    Type: Application
    Filed: March 1, 2021
    Publication date: July 8, 2021
    Inventors: Ding-Kang Shih, Sung-Li Wang, Pang-Yen Tsai
  • Publication number: 20210193816
    Abstract: The structure of a semiconductor device with dual silicide contact structures and a method of fabricating the semiconductor device are disclosed. A method of fabricating the semiconductor device includes forming first and second fin structures on a substrate, forming first and second epitaxial regions on the first and second fin structures, respectively, forming first and second contact openings on the first and second epitaxial regions, respectively, selectively forming an oxide capping layer on exposed surfaces of the second epitaxial region, selectively forming a first metal silicide layer on exposed surfaces of the first epitaxial region, removing the oxide capping layer, and forming first and second conductive regions on the metal silicide layer and on the exposed surfaces of the second epitaxial region, respectively. The first metal silicide layer includes a first metal. The first and second conductive regions includes a second metal different from the first metal.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Peng-Wei Chu, Ding-Kang Shih, Sung-Li Wang, Yasutoshi Okuno
  • Publication number: 20210126106
    Abstract: The present disclosure describes an inner spacer structure for a semiconductor device and a method for forming the same. The method for forming the inner spacer structure in the semiconductor device can include forming a vertical structure over a substrate, forming a gate structure over a portion of the vertical structure, exposing sidewalls of the portion of the vertical structure, forming multiple spacers over the sidewalls of the portion of the vertical structure, and forming a void in each of the multiple spacers.
    Type: Application
    Filed: October 24, 2019
    Publication date: April 29, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Han WANG, Ding-Kang Shih, Chun-Hsiung Lin, Teng-Chun Tsai, Zhi-Chang Lin, Akira Mineji, Yao-Sheng Huang
  • Patent number: 10978451
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Patent number: 10937876
    Abstract: Examples of an integrated circuit with an interface between a source/drain feature and a contact and examples of a method for forming the integrated circuit are provided herein. In some examples, a substrate is received having a source/drain feature disposed on the substrate. The source/drain feature includes a first semiconductor element and a second semiconductor element. The first semiconductor element of the source/drain feature is oxidized to produce an oxide of the first semiconductor element on the source/drain feature and a region of the source/drain feature with a greater concentration of the second semiconductor element than a remainder of the source/drain feature. The oxide of the first semiconductor element is removed, and a contact is formed that is electrically coupled to the source/drain feature. In some such embodiments, the first semiconductor element includes silicon and the second semiconductor element includes germanium.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 2, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ding-Kang Shih, Sung-Li Wang, Pang-Yen Tsai
  • Publication number: 20210020522
    Abstract: A semiconductor device and a method of making the same are provided. A method according to the present disclosure includes providing a workpiece comprising a first source/drain region in a first device region and a second source/drain region in a second device region, depositing a dielectric layer over the first source/drain region and the second source drain region, forming a first via opening in the dielectric layer to expose the first source/drain region and a second via opening in the dielectric layer to expose the second source/drain region, annealing the workpiece to form a first semiconductor oxide feature over the exposed first source/drain region and a second semiconductor oxide feature over the exposed second source/drain region, removing the first semiconductor oxide feature to expose the first source/drain region in the first via opening in dielectric layer, and selectively forming a first epitaxial feature over the exposed first source/drain region.
    Type: Application
    Filed: July 16, 2019
    Publication date: January 21, 2021
    Inventors: Ding-Kang Shih, Cheng-Long Chen, Pang-Yen Tsai
  • Publication number: 20200258784
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10651091
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: May 12, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20200135874
    Abstract: Examples of an integrated circuit with an interface between a source/drain feature and a contact and examples of a method for forming the integrated circuit are provided herein. In some examples, a substrate is received having a source/drain feature disposed on the substrate. The source/drain feature includes a first semiconductor element and a second semiconductor element. The first semiconductor element of the source/drain feature is oxidized to produce an oxide of the first semiconductor element on the source/drain feature and a region of the source/drain feature with a greater concentration of the second semiconductor element than a remainder of the source/drain feature. The oxide of the first semiconductor element is removed, and a contact is formed that is electrically coupled to the source/drain feature. In some such embodiments, the first semiconductor element includes silicon and the second semiconductor element includes germanium.
    Type: Application
    Filed: February 15, 2019
    Publication date: April 30, 2020
    Inventors: Ding-Kang Shih, Sung-Li Wang, Pang-Yen Tsai
  • Publication number: 20200119013
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Publication number: 20200006159
    Abstract: A method includes providing a p-type S/D epitaxial feature and an n-type source/drain (S/D) epitaxial feature, forming a semiconductor material layer over the n-type S/D epitaxial feature and the p-type S/D epitaxial feature, processing the semiconductor material layer with a germanium-containing gas, where the processing of the semiconductor material layer forms a germanium-containing layer over the semiconductor material layer, etching the germanium-containing layer, where the etching of the germanium-containing layer removes the germanium-containing layer formed over the n-type S/D epitaxial feature and the semiconductor material layer formed over the p-type S/D epitaxial feature, and forming a first S/D contact over the semiconductor material layer remaining over the n-type S/D epitaxial feature and a second S/D contact over the p-type S/D epitaxial feature. The semiconductor material layer may have a composition similar to that of the n-type S/D epitaxial feature.
    Type: Application
    Filed: December 11, 2018
    Publication date: January 2, 2020
    Inventors: Ding-Kang Shih, Pang-Yen Tsai
  • Patent number: 10510754
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Publication number: 20190252261
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10304826
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 28, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Patent number: 10269628
    Abstract: A contact structure of a semiconductor device is provided. The contact structure for a semiconductor device comprises a substrate comprising a major surface and a trench below the major surface; a strained material filling the trench, wherein a lattice constant of the strained material is different from a lattice constant of the substrate, and wherein a surface of the strained material has received a passivation treatment; an inter-layer dielectric (ILD) layer having an opening over the strained material, wherein the opening comprises dielectric sidewalls and a strained material bottom; a dielectric layer coating the sidewalls and bottom of the opening, wherein the dielectric layer has a thickness ranging from 1 nm to 10 nm; a metal barrier coating an opening of the dielectric layer; and a metal layer filling a coated opening of the dielectric layer.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Ding-Kang Shih, Chin-Hsiang Lin, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 10269649
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20190096885
    Abstract: An embodiment complimentary metal-oxide-semiconductor (CMOS) device and an embodiment method of forming the same are provided. The embodiment CMOS device includes an n-type metal-oxide-semiconductor (NMOS) having a titanium-containing layer interposed between a first metal contact and an NMOS source and a second metal contact and an NMOS drain and a p-type metal-oxide-semiconductor (PMOS) having a PMOS source and a PMOS drain, the PMOS source having a first titanium-containing region facing a third metal contact, the PMOS drain including a second titanium-containing region facing a fourth metal contact.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Clement Hsingjen Wann, Chih-Hsin Ko, Cheng-Hsien Wu, Ding-Kang Shih, Hau-Yu Lin
  • Publication number: 20180219077
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: March 28, 2018
    Publication date: August 2, 2018
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Patent number: 9941367
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: April 10, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann