Patents by Inventor Ding Sheng

Ding Sheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080281391
    Abstract: An apparatus for mapping and/or ablating tissue includes a braided conductive member that that may be inverted to provide a ring-shaped surface. When a distal tip of the braided conductive member is retracted within the braided conductive member, the lack of a protrusion allows the ring-shaped surface to contact a tissue wall such as a cardiac wall. In an alternative configuration, the braided conductive member may be configured with the distal portion forming a proboscis that can be used to stably position the braided conductive member relative to a blood vessel, such as a ventricular outflow tract. The braided conductive member has a plurality of electronically active sites that may be accessed individually for stable mapping over a broad area for stable mapping or ablation to form broad and deep lesions.
    Type: Application
    Filed: May 17, 2005
    Publication date: November 13, 2008
    Applicant: C.R. Bard, Inc.
    Inventors: David MacAdam, Ding Sheng He
  • Publication number: 20080247932
    Abstract: A method for making colloidal nanocrystals includes the following steps: dissolving a nanocrystal powder in an organic solvent, and achieving a solution A of a concentration of 1-30 mg/ml; dissolving a surfactant in water, and achieving a solution B of a concentration of 0.002-0.05 mmol/ml; mixing the solution A and the solution B in a volume ratio of 1: (5-30), and achieving a mixture; stirring and emulsifying the mixture, until an emulsion C is achieved; removing the organic solvent from the emulsion C, and achieving a deposit; then washing the deposit with deionized water, and achieving colloidal nanocrystals. The present method for making colloidal nanocrystals is economical and timesaving, and has a low toxicity associated therewith. Thus, the method is suitable for industrial mass production. The colloidal nanocrystals made by the present method have a readily controllable size, a narrow size distribution, and good configuration.
    Type: Application
    Filed: December 14, 2007
    Publication date: October 9, 2008
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Ya-Dong Li, Feng Bai, Ding-Sheng Wang, Zi-Yang Huo, Wei Chen, Li-Ping Liu
  • Publication number: 20080241054
    Abstract: A method for making the metal oxide includes the following steps: mixing a metal nitrate with a solvent of octadecyl amine, and achieving a mixture; agitating and reacting the mixture at a reaction temperature for a reaction period; cooling the mixture to a cooling temperature, and achieving a deposit; and washing the deposit with an organic solvent, drying the deposit at a drying temperature and achieving a metal oxide nanocrystal. The present method for making a metal oxide nanocrystal is economical and timesaving, and has a low toxicity associated therewith. Thus, the method is suitable for industrial mass production.
    Type: Application
    Filed: November 2, 2007
    Publication date: October 2, 2008
    Applicants: Tsinghua University, HON HAI Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Ding-Sheng Wang
  • Patent number: 7306594
    Abstract: An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: December 11, 2007
    Assignee: C.R. Bard, Inc.
    Inventors: Russell F. Collins, Gary S. Falwell, Eric A. Bene, Steven J. Burns, Denyse M. Collins, Charles A. Gibson, Ding Sheng He, Paul E. LeClair, Donald F. Patterson, Stephen W. Sagon, Pierre Jais
  • Publication number: 20060190045
    Abstract: The patterns of contraction and relaxation of the heart before and during left ventricular or biventricular pacing are analyzed and displayed in real time mode to assist physicians to screen patients for cardiac resynchronization therapy, to set the optimal AN or right ventricle to left ventricle interval delay, and to select the site(s) of pacing that result in optimal cardiac performance. The system includes an accelerometer sensor (40); a programmable pace maker (35, 41), a computer data analysis module (32), and may also include a 2D and 3D visual graphic display of analytic results (43, 44), i.e. a Ventricular Contraction Map. A feedback network (32) provides direction for optimal pacing leads placement.
    Type: Application
    Filed: July 28, 2004
    Publication date: August 24, 2006
    Inventors: Frank Marcus, Ding Sheng He
  • Patent number: 6978184
    Abstract: The patterns of contraction and relaxation of the heart before and during left ventricular or biventricular pacing are analyzed and displayed in real time mode to assist physicians to screen patients for cardiac resynchronization therapy, to set the optimal A-V or right ventricle to left ventricle interval delay, and to select the site(s) of pacing that result in optimal cardiac performance. The system includes an accelerometer sensor; a programmable pace maker, a computer data analysis module, and may also include a 2D and 3D visual graphic display of analytic results, i.e. a Ventricular Contraction Map. A feedback network provides direction for optimal pacing leads placement.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: December 20, 2005
    Inventors: Frank I. Marcus, Ding Sheng He
  • Patent number: 6837886
    Abstract: An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 4, 2005
    Assignee: C.R. Bard, Inc.
    Inventors: Russell F. Collins, Gary S. Falwell, Eric A. Bene, Steven J. Burns, Denyse M. Collins, Charles A. Gibson, Ding Sheng He, Paul E. LeClair, Donald F. Patterson, Stephen W. Sagon, Pierre Jais
  • Patent number: 6569162
    Abstract: A self-cooling electrode for use with an ablation catheter has greater surface area that allows electrode to dissipate heat to the blood pool more effectively and increased thermal mass, and, therefor greater heating capacity/thermal conductivity for improved heat transfer between the electrode and tissue for more effective tissue heating. The electrode design allows increased power to be delivered with minimized risk of overheating or coagulation at the tissue-electrode interface. The increased thermal mass and thermal conductivity of the electrode design are achieved with a substantially solid electrode body with thick walls. Cooling and increased heat exchange are achieved with an alternating pattern of channels and projections that collectively define a plurality of edges either parallel or perpendicular to the electrode axis.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: May 27, 2003
    Inventor: Ding Sheng He
  • Publication number: 20030028185
    Abstract: A self-cooling electrode for use with an ablation catheter has greater surface area that allows electrode to dissipate heat to the blood pool more effectively and increased thermal mass, and, therefor greater heating capacity/thermal conductivity for improved heat transfer between the electrode and tissue for more effective tissue heating. The electrode design allows increased power to be delivered with minimized risk of overheating or coagulation at the tissue-electrode interface. The increased thermal mass and thermal conductivity of the electrode design are achieved with a substantially solid electrode body with thick walls. Cooling and increased heat exchange are achieved with an alternating pattern of channels and projections that collectively define a plurality of edges either parallel or perpendicular to the electrode axis.
    Type: Application
    Filed: March 29, 2001
    Publication date: February 6, 2003
    Inventor: Ding Sheng He
  • Publication number: 20020107511
    Abstract: An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
    Type: Application
    Filed: April 27, 2001
    Publication date: August 8, 2002
    Inventors: Russell F. Collins, Gary S. Falwell, Eric A. Bene, Steven J. Burns, Denyse M. Collins, Charles A. Gibson, Ding Sheng He, Paul E. LeClair, Donald F. Patterson, Stephen W. Sagon, Pierre Jais
  • Patent number: 6423057
    Abstract: Impedance and capacitance-related parameters are monitored in the electrical circuit of a tissue-ablation apparatus wherein RF electrical power is administered at predetermined frequencies. Tissue temperature has been found to correlate well with low-frequency impedance, or with the resistive component of impedance at any frequency. Therefore, one or both of these parameters are calculated and tracked during the ablation procedure to estimate tissue temperature. Similarly, tissue lesion formation has been found to correlate well with changes in the capacitive component of tissue impedance. Thus, this parameter can be used to track tissue lesion formation during the ablation procedure. The ratio of tissue-to-blood interface with the ablation electrode is estimated by measuring impedance at a very low frequency and a very high frequency. The difference between these two values divided by the high-frequency value is taken to be a measure of such ratio.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: July 23, 2002
    Assignee: The Arizona Board of Regents on behalf of The University of Arizona
    Inventors: Ding Sheng He, Michael Bosnos, Frank Marcus
  • Patent number: 6322558
    Abstract: During an ablation procedure in a chamber of the heart RF energy is used to form a myocardial lesion for treatment of some arrhythmias such as sustained supraventricular tachycardia and accessory pathways. A galvanic cell formed by a metallic electrode having a first work function at the ablation site, a second metallic electrode having a second work function located remote from the ablation site and the intervening tissue serving as an electrolyte, produces an output current signal reflective of the formation of a lesion at the ablation site and is used to control the RF energy applied. A curve depicting the output current signal has a maximum value at the point a burn or lesion formation and thereafter decreases in value. A short duration inflection or bump of the curve occurs prior to charring and carbonization of the lesion.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: November 27, 2001
    Assignee: Engineering & Research Associates, Inc.
    Inventors: Junius E. Taylor, Ding Sheng He