Patents by Inventor Dingding Chen

Dingding Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9874506
    Abstract: System, methods, and apparatuses for determining properties of a production fluid downhole are presented. In one instance, a system includes a sample-filled sensing device for vibrating a first suspended tube containing a sample of production fluid and producing a first response signal. The system also includes a reference-fluid sensing device with a second suspended tube containing a viscosity-tunable fluid therein. The system vibrates the second suspended tube to create a second response signal. The viscosity of the viscosity-tunable fluid is varied until it is deemed to match that of the sample production fluid. Other systems and methods are presented.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: January 23, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Li Gao, Michael T. Pelletier, Dingding Chen, Nestor Rodriguez
  • Patent number: 9857279
    Abstract: In some embodiments, an apparatus and a system, as well as a method and an article, may operate to receive a vibration signal having a frequency and a characteristic (e.g., voltage) proportional to the vibration amplitude of a tube in a vibrating tube density sensor. Further activity may include transmitting the density of a fluid flowing through the tube based on the frequency and an elastic modulus of the tube determined by the value of the characteristic. Additional apparatus, systems, and methods are described.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: January 2, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Li Gao, Michael T. Pelletier, Nestor Javier Rodriguez
  • Publication number: 20170269260
    Abstract: A method may include collecting measurement data using a first operational sensor and a second operational sensor of a downhole tool, standardizing optical responses of each operational sensor to a master sensor in a tool parameter space to obtain a standardized master sensor response, transforming the standardized master sensor response to a synthetic parameter space response of the master sensor, applying a fluid model with the synthetic parameter space response of the master sensor to predict a fluid characteristic, comparing a first prediction obtained with the fluid model from the first operational sensor with a second prediction obtained with the fluid model from the second operational sensor, determining a fluid characteristic from the first prediction and the second prediction, and optimizing a well testing and sampling operation according to the fluid characteristic.
    Type: Application
    Filed: November 18, 2015
    Publication date: September 21, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Bin Dai, Jing Shen, Ming Gu
  • Publication number: 20170270225
    Abstract: A method for ruggedizing an ICE design, fabrication and application with neural networks as disclosed herein includes selecting a database for integrated computational element (ICE) optimization is provided. The method includes adjusting a plurality of ICE operational parameters according to an environmental factor recorded in the database and simulating environmentally compensated calibration inputs. The method includes modifying a plurality of ICE structure parameters to obtain an ICE candidate structure having improved performance according to a first algorithm applied to the database and validating the ICE candidate structure with an alternative algorithm applied to the database. Further, the method includes determining a plurality of manufacturing ICEs based on the validation with the first algorithm and the alternative algorithm, and fabricating one of the plurality of manufacturing ICEs.
    Type: Application
    Filed: October 30, 2015
    Publication date: September 21, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding CHEN, James M PRICE, Bin DAI
  • Publication number: 20170261640
    Abstract: A method of cross-tool optical fluid model validation includes selecting verified field data measured with a first sensor of an existing tool as validation fluids and selecting a second sensor for a new tool or on a different existing tool. The method may also include applying cross-tool optical data transformation to the validation fluids in a tool parameter space from the first sensor to the second sensor, and calculating the synthetic optical responses of the second sensor on the validation fluids through cross-space data transformation. The method may further include determining a new or adjusting an existing operational fluid model of the second sensor in a synthetic parameter space according to the candidate model performance evaluated on the validation fluids, and optimizing well testing and sampling operation based on real-time estimated formation fluid characteristics using the validated fluid models of the second sensor in an operating tool.
    Type: Application
    Filed: November 19, 2015
    Publication date: September 14, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Bin Dai, Christopher Michael Jones, Darren Gascooke, Tian He
  • Patent number: 9726012
    Abstract: Systems and methods for optical fluid identification approximation and calibration are described herein. One example method includes populating a database with a calculated pseudo optical sensor (CPOS) response of a first optical tool to a first sample fluid. The CPOS response of the first optical tool may be based on a transmittance spectrum of a sample fluid and may comprise a complex calculation using selected components of the first optical tool. A first model may be generated based, at least in part, on the database. The first model may receive as an input an optical sensor response and output a predicted fluid property. A second model may also be generated based, at least in part, on the database. The second model may receive as an input at least one known/measured fluid/environmental property value and may output a predicted pseudo optical sensor response of the first optical tool.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: August 8, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David Perkins, Jing Cynthia Shen, Christopher Michael Jones
  • Publication number: 20170205532
    Abstract: Apparatus, methods, and systems related to a thin-layer spectroelectrochemistry cell; electrically coupling a second end of a working electrical wire lead, a second end of a counter electrical wire lead, and a second end of a reference electrical wire lead to a potentiostat; introducing a conductive fluid into a cell body in the spectroelectrochemistry cell; introducing a detection species into the cell body; introducing a sample into the cell body; applying a voltage potential across the transparent sample window to drive an electrochemical reaction between the detection species and the sample in the transparent sample window fluid; transmitting electromagnetic radiation into an optical path through the transparent sample window, thereby optically interacting the electromagnetic radiation with the transparent sample window fluid to generate modified electromagnetic radiation; receiving the modified electromagnetic radiation with a detector; and generating an output signal corresponding to a characteristic of
    Type: Application
    Filed: February 20, 2015
    Publication date: July 20, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Jing C. Shen, Dingding Chen, Michael T. Pelletier
  • Patent number: 9702248
    Abstract: Apparatus, systems, and methods may operate to select a subset of sensor responses as inputs to each of a plurality of pre-calibrated models in predicting each of a plurality of formation fluid properties. The sensor responses are obtained and pre-processed from a downhole measurement tool. Each of the plurality of predicted formation fluid properties are evaluated by applying constraints in hydrocarbon concentrations, geo-physics, and/or petro-physics. The selection of sensor responses and the associated models from a pre-constructed model base or a candidate pool are adjusted and reprocessed to validate model selection.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: July 11, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Christopher Michael Jones, David L. Perkins, Jing Shen, Li Gao, Michael T. Pelletier
  • Patent number: 9638034
    Abstract: A system for pressure testing a formation includes a downhole tool configured to measure formation pressure, storage containing pressure parameters of a plurality of simulated formation pressure tests, and a formation pressure test controller coupled to the downhole tool and the storage. For each of a plurality of sequential pressure testing stages of a formation pressure test, the formation pressure test controller 1) retrieves formation pressure measurements from the downhole tool; 2) identifies one of the plurality of simulated formation pressure tests comprising pressure parameters closest to corresponding formation pressure values derived from the formation pressure measurements; and 3) determines a flow rate to apply by the downhole tool in a next stage of the test based on the identified one of the plurality of simulated formation pressure tests.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: May 2, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Mark A. Proett, Christopher Michael Jones, Abdolhamid Hadibeik
  • Patent number: 9612361
    Abstract: An example method includes performing validation testing on a tool using a plurality of reference fluids, the tool having a calibrated optical sensor installed therein that includes one or more optical elements. One or more tool sensor responses from the calibrated optical sensor may be obtained and pre-processed, and the one or more tool sensor responses may be compared with calibrated optical sensor responses derived from the calibrated optical sensor during calibration and thereby detecting one or more optical sensor anomalies. The one or more optical sensor anomalies may be evaluated through performance analysis with one or more candidate models, and an alternative candidate model may be selected to mitigate the one or more optical sensor anomalies. One or more remedial options may be pursued when the alternative candidate model fails to mitigate the one or more optical sensor anomalies.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: April 4, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins, William Soltmann, Darren Gascooke, Jing Shen
  • Publication number: 20170058666
    Abstract: Dimensionality reduction systems and methods facilitate visualization, understanding, and interpretation of high-dimensionality data sets, so long as the essential information of the data set is preserved during the dimensionality reduction process. In some of the disclosed embodiments, dimensionality reduction is accomplished using clustering, evolutionary computation of low-dimensionality coordinates for cluster kernels, particle swarm optimization of kernel positions, and training of neural networks based on the kernel mapping. The fitness function chosen for the evolutionary computation and particle swarm optimization is designed to preserve kernel distances and any other information deemed useful to the current application of the disclosed techniques, such as linear correlation with a variable that is to be predicted from future measurements. Various error measures are suitable and can be used.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding CHEN, Syed HAMID, Michael C. DIX
  • Patent number: 9542511
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for determining a synthetic gas-oil-ratio for a gas dominant fluid. For example, one disclosed embodiment includes a system that includes at least one processor, and at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations that include optimizing a gas-oil-ratio database using a genetic algorithm and a multivariate regression simulator and generating a synthetic gas-oil-ratio for a gas dominant fluid.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 10, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins, Christopher Michael Jones, Jing Shen, Michael T. Pelletier, Robert Atkinson
  • Patent number: 9519865
    Abstract: Various embodiments include apparatus and methods to provide pipe analysis, annulus analysis, or one or more combinations of pipe analysis and annulus analysis with respect to one or more pipes in a wellbore. The analysis can include application of clustering and classification methods with respect to the status and the environment of the one or more pipes in the wellbore. In various embodiments, the clustering and classification can be used in characterizing borehole annular material including cement bond quality evaluation. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: December 13, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventors: John Quirein, Philip Edmund Fox, Jerome Allen Truax, Dingding Chen
  • Patent number: 9514388
    Abstract: Dimensionality reduction systems and methods facilitate visualization, understanding, and interpretation of high-dimensionality data sets, so long as the essential information of the data set is preserved during the dimensionality reduction process. In some of the disclosed embodiments, dimensionality reduction is accomplished using clustering, evolutionary computation of low-dimensionality coordinates for cluster kernels, particle swarm optimization of kernel positions, and training of neural networks based on the kernel mapping. The fitness function chosen for the evolutionary computation and particle swarm optimization is designed to preserve kernel distances and any other information deemed useful to the current application of the disclosed techniques, such as linear correlation with a variable that is to be predicted from future measurements. Various error measures are suitable and can be used.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: December 6, 2016
    Assignee: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Dingding Chen, Syed Hamid, Michael C. Dix
  • Publication number: 20160349400
    Abstract: Systems and methods for simulating optical sensor response data for fluids in a wellbore are disclosed herein. A system comprises a downhole tool, an optical sensor coupled to the downhole tool, and a sensor information mapping module. The sensor information mapping module is operable to receive sensor response information associated with the optical sensor and a first fluid, receive sensor spectra information associated with the optical sensor, and receive fluid spectroscopy information associated with the first fluid. The sensor information mapping module is also operable to determine a transformation matrix using the sensor response information, the sensor spectra information, and the fluid spectroscopy information, and determine, using the transformation matrix, simulated sensor response information associated with the optical sensor and a second fluid.
    Type: Application
    Filed: December 4, 2014
    Publication date: December 1, 2016
    Inventors: Dingding Chen, Bin Dai, David L. Perkins
  • Publication number: 20160327684
    Abstract: An example method includes performing validation testing on a tool using a plurality of reference fluids, the tool having a calibrated optical sensor installed therein that includes one or more optical elements. One or more tool sensor responses from the calibrated optical sensor may be obtained and pre-processed, and the one or more tool sensor responses may be compared with calibrated optical sensor responses derived from the calibrated optical sensor during calibration and thereby detecting one or more optical sensor anomalies. The one or more optical sensor anomalies may be evaluated through performance analysis with one or more candidate models, and an alternative candidate model may be selected to mitigate the one or more optical sensor anomalies. One or more remedial options may be pursued when the alternative candidate model fails to mitigate the one or more optical sensor anomalies.
    Type: Application
    Filed: December 12, 2014
    Publication date: November 10, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, David L. Perkins, William Soltmann, Darren Gascooke, Jing Shen
  • Publication number: 20160320527
    Abstract: A method includes obtaining a plurality of master sensor responses with a master sensor in a set of training fluids and obtaining node sensor responses in the set of training fluids. A linear correlation between a compensated master data set and a node data set is then found for a set of training fluids and generating node sensor responses in a tool parameter space from the compensated master data set on a set of application fluids. A reverse transformation is obtained based on the node sensor responses in a complete set of calibration fluids. The reverse transformation converts each node sensor response from a tool parameter space to the synthetic parameter space, and uses transformed data as inputs of various fluid predictive models to obtain fluid characteristics. The method includes modifying operation parameters of a drilling or a well testing and sampling system according to the fluid characteristics.
    Type: Application
    Filed: December 29, 2014
    Publication date: November 3, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Bin Dai, Christopher M. Jones, Darren Gascooke, Tian He
  • Publication number: 20160283615
    Abstract: The disclosed embodiments include a method, apparatus, and computer program product for determining a synthetic gas-oil-ratio for a gas dominant fluid. For example, one disclosed embodiment includes a system that includes at least one processor, and at least one memory coupled to the at least one processor and storing instructions that when executed by the at least one processor performs operations that include optimizing a gas-oil-ratio database using a genetic algorithm and a multivariate regression simulator and generating a synthetic gas-oil-ratio for a gas dominant fluid.
    Type: Application
    Filed: December 27, 2013
    Publication date: September 29, 2016
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Dingding Chen, David L. Perkins, Christopher Michael Jones, Jing Shen, Michael T. Pelletier, Robert Atkinson
  • Publication number: 20160273354
    Abstract: Apparatus, systems, and methods may operate to select a subset of sensor responses as inputs to each of a plurality of pre-calibrated models in predicting each of a plurality of formation fluid properties. The sensor responses are obtained and pre-processed from a downhole measurement tool. Each of the plurality of predicted formation fluid properties are evaluated by applying constraints in hydrocarbon concentrations, geo-physics, and/or petro-physics. The selection of sensor responses and the associated models from a pre-constructed model base or a candidate pool are adjusted and reprocessed to validate model selection.
    Type: Application
    Filed: January 27, 2014
    Publication date: September 22, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Dingding Chen, Christopher Michael Jones, David L. Perkins, Jing Shen, Li Gao, Michael T. Pelletier
  • Publication number: 20160216187
    Abstract: System, methods, and apparatuses for determining properties of a production fluid downhole are presented. In one instance, a system includes a sample-filled sensing device for vibrating a first suspended tube containing a sample of production fluid and producing a first response signal. The system also includes a reference-fluid sensing device with a second suspended tube containing a viscosity -tunable fluid therein. The system vibrates the second suspended tube to create a second response signal. The viscosity of the viscosity -tunable fluid is varied until it is deemed to match that of the sample production fluid. Other systems and methods are presented.
    Type: Application
    Filed: November 6, 2013
    Publication date: July 28, 2016
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Li Gao, Michael T. Pelletier, Dingding Chen, Nestor Rodriguez