Patents by Inventor Dingshan RUAN

Dingshan RUAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128456
    Abstract: The invention belongs to the technical field of material synthesis, and discloses a nitrogen-doped hollow cobaltosic oxide and a preparation method and application thereof. A chemical formula of the nitrogen-doped hollow cobaltosic oxide is Co3O4—COF-T-D@C—N; and the COF-T-D is a covalent organic framework. Due to an open hollow structure, the nitrogen-doped hollow cobaltosic oxide of the invention has a large specific surface area, thus having a large contact area with an electrolyte, which is convenient for lithium ions to transport therein. The open hollow structure also prevents a volume effect from being generated during charging and discharging, and nitrogen is introduced for doping, so that granules can be gradually activated to increase the specific surface area and active sites, a discharge (cycle) stability of the material is improved, and a rate performance of the material is improved.
    Type: Application
    Filed: November 11, 2022
    Publication date: April 18, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Xingyu WU, Changdong LI, Maohua FENG, Dingshan RUAN, Bin LI, Baoye LIU
  • Publication number: 20240088388
    Abstract: The disclosure belongs to the technical field of sodium ion battery materials, and discloses a preparation method of a hard carbon anode material and use thereof. The preparation method includes the following steps of: performing first sintering on starch, crushing, and introducing air and nitrogen for secondary sintering to obtain porous hard block granules; and performing third sintering on the porous hard block granules, and then continuously warming up to perform fourth sintering to obtain the hard carbon anode material. The hard carbon anode material prepared by the disclosure has a reversible capacity of no less than 330 mAh/g, excellent cycle stability and initial coulomb efficiency.
    Type: Application
    Filed: November 11, 2022
    Publication date: March 14, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Shuang ZHENG, Changdong LI, Linlin MAO, Dingshan RUAN
  • Publication number: 20240063389
    Abstract: The present disclosure discloses a preparation method of a hard carbon (HC) anode material and use thereof. The preparation method includes the following steps: mixing a substance A, a first alcohol liquid, and an oxidant to obtain a peroxide gel of the substance A, and dissolving a substance B in a second alcohol liquid to obtain an amino-containing solution; mixing the peroxide gel of the substance A with the amino-containing solution to allow a reaction to obtain a post-reaction slurry; and lyophilizing the post-reaction slurry to obtain a dry powder, subjecting the dry powder to calcination in a protective atmosphere to obtain a calcined material, soaking the calcined material in an acid liquid, and water-washing and drying to obtain the HC anode material.
    Type: Application
    Filed: October 31, 2023
    Publication date: February 22, 2024
    Inventors: Xingyu Wu, Changdong Li, Maohua Feng, Dingshan Ruan, Bin Li, Qianyi Tan
  • Publication number: 20240055684
    Abstract: The invention belongs to the field of battery material recovery, and discloses a preparation method and application of heterosite phosphate. The method comprises the following steps: mixing lithium iron phosphate with a solvent, adding an acid solution, and adjusting the pH to obtain an acidic lithium iron phosphate liquid; adding a transition metal additive to the acidic lithium iron phosphate liquid, and performing leaching in an intensifying micro-environment, followed by filtrating to obtain heterosite iron phosphate and a lithium-rich solution. The leaching rate of lithium in the leaching solution reaches 90.5-99.9%, and both of the iron and phosphorus content in the leaching solution are less than 0.1 ppm; the recovered heterosite iron phosphate has a purity of 99.9%, and the recovery rate of the heterosite iron phosphate is 99.3%.
    Type: Application
    Filed: October 13, 2021
    Publication date: February 15, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Shili Zheng, Dingshan Ruan, Changdong Li, Ying Zhang, Zhi Sun, Yang Zhang, Xiaojian Wang
  • Patent number: 11894531
    Abstract: A method for recovering lithium battery slurry, the method comprising: pretreating lithium battery slurry, and then subjecting the pretreated lithium battery slurry to centrifugal spray drying to separate a solid phase and a solvent. A device for the recovery of lithium battery slurry is a centrifugal spray drying system, and comprises a spray chamber (100), a cyclone separator (200), a condenser (400), a condensate storage tank (500), and a rectification tower (600); the system improves upon original centrifugal spray drying devices, and is designed to combine the processes of centrifugal spray drying and NMP condensation recovery, such that NMP can be directly recovered after separation of positive electrode material and the NMP.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: February 6, 2024
    Assignees: Guangdong Brunp Recycling Technology Co., Ltd., Hunan Brunp Recycling Technology Co., Ltd., Hunan Brunp EV Recycling Co., Ltd.
    Inventors: Peichao Ning, Changdong Li, You Zhou, Qiang Li, Dingshan Ruan, Song Chen
  • Publication number: 20240039068
    Abstract: Disclosed are a method for selectively extracting lithium from a retired battery and an application of the method. According to the method, on the basis of an ion exchange effect between a divalent manganese ion and a lithium ion, a positive electrode material and a divalent manganese salt are mixed according to a certain proportion and prepared into a slurry, and the divalent manganese salt and the positive electrode material are fully mixed by means of a ball milling process, such that a lattice structure of the positive electrode material is effectively damaged, thereby reducing activation energy of exchange of the divalent manganese ion and the lithium ion and greatly reducing reaction energy required by a subsequence lithium extraction process.
    Type: Application
    Filed: June 6, 2022
    Publication date: February 1, 2024
    Inventors: Bo LI, Changdong LI, Dingshan RUAN, Ruokui CHEN, Yanchao QIAO, Donglian BAO
  • Publication number: 20240035127
    Abstract: A method for safely oxidising roasting NdFeB powder material. The method may include: S1: magnetizing and drying the NdFeB powder material; S2: heating the magnetized and dried NdFeB powder material to spontaneous combustion, and then preparing the spontaneous combustion product into a powder; and S3: magnetizing and then oxidising roasting the powder to obtain NdFeB oxide.
    Type: Application
    Filed: December 30, 2021
    Publication date: February 1, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO., LTD.
    Inventors: Jianfeng XU, Changdong LI, Dingshan RUAN, Linlin MAO, Yulong LIAO, Ding YANG
  • Publication number: 20240039069
    Abstract: A treatment method of scrapped positive electrode slurry, includes the following steps: pretreating the scrapped positive electrode slurry to obtain a slurry solution; performing electrophoresis coagulation and filter pressing on the slurry solution to obtain a liquid phase and a solid phase; and performing gradient roasting on the solid phase to obtain a positive electrode material.
    Type: Application
    Filed: December 30, 2021
    Publication date: February 1, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO., LTD.
    Inventors: Qiang LI, Changdong LI, Dingshan RUAN, You ZHOU, Song CHEN, Peichao NING
  • Patent number: 11888145
    Abstract: Disclosed are a ternary single crystal positive electrode material, a preparation method therefor and use thereof. The preparation method comprises the following steps: mixing a ternary polycrystalline micropowder, raising a temperature, carrying out a primary sintering, and lowering the temperature to obtain an intermediate; subjecting the intermediate to jet pulverization to obtain a single crystal material, washing the single crystal material with water, and centrifugally drying the single crystal material to obtain a material with a residual alkali content of less than 1500 ppm; and adding a coating agent to the material, raising a temperature, carrying out a secondary sintering, and lowering the temperature to obtain the ternary single crystal positive electrode material. In the present disclosure, by using a jet pulverization device to open a polycrystalline material to form small single crystal particles, the electrochemical performance and the energy density of the material is improved.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: January 30, 2024
    Assignees: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO., LTD.
    Inventors: Feilong Li, Dingshan Ruan, Shuai Han, Wenzhu Ma, Quele Wang, Qingcheng Fang, Changdong Li
  • Publication number: 20240025763
    Abstract: The present disclosure discloses a preparation method of a Ni-Rich ternary precursor and use thereof. The preparation method includes the following steps: under specified conditions, feeding an alkali liquor and a metal salt solution simultaneously for a precipitation reaction to obtain particles with D50 of 7.0 ?m to 15.0 ?m; continuously feeding a seed crystal, and after D10 of the particles is adjusted to 2.0 ?m to 7.0 ?m, stopping feeding the seed crystal; continuously feeding the alkali liquor and the metal salt solution, and collecting an overflow material; and when a particle size grows to D50 of 7.0 ?m to 15.0 ?m once again, repeating the above operation of adding a seed crystal, and continuously collecting an overflow material; and washing, drying, and sieving the collected materials to obtain the Ni-Rich ternary precursor.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: Weiquan Li, Changdong Li, Genghao Liu, Dingshan Ruan, Hongjia Lin
  • Publication number: 20240025745
    Abstract: A method for preparing nano iron phosphate with low sulfur content. The method may include: S1: mixing a phosphorus source and an iron source to obtain a raw material solution, then adding alkali and a surfactant, adjusting a pH, and stirring and reacting to obtain an iron phosphate dihydrate slurry, S2: adding phosphoric acid solution into the iron phosphate dihydrate slurry, adjusting the pH, heating and stirring for aging, and filtering to obtain iron phosphate dihydrate, S3: adding water into the iron phosphate dihydrate for slurrying, and grinding to obtain a ground slurry; and S4: adding the ground slurry into a washing solution to wash, carrying out solid-liquid separation, and calcining a solid phase to obtain the nano iron phosphate with low sulfur content.
    Type: Application
    Filed: May 27, 2022
    Publication date: January 25, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Lingjie LI, Changdong LI, Shenghe TANG, Dingshan RUAN, Shuai HAN, Gaorong HUANG
  • Publication number: 20240025760
    Abstract: The present disclosure discloses a preparation method of a ternary precursor, including: S1: mixing a first metal salt solution with a soluble nickel salt, a soluble cobalt salt, and a soluble manganese salt, ammonia water, and a sodium hydroxide solution, adjusting a pH, and heating and stirring a resulting mixture to allow a reaction; and aging and filtering a resulting slurry to obtain a precursor seed crystal; S2: adding the precursor seed crystal to a dilute acid solution, and stirring and filtering a resulting mixture to obtain an acidified seed crystal; and S3: mixing a second metal salt solution with a soluble nickel salt, a soluble cobalt salt, and a soluble manganese salt, a sodium hydroxide solution, and the acidified seed crystal, adjusting a pH, and heating and stirring a resulting mixture to allow a reaction; and aging, filtering, and drying a resulting slurry to obtain the ternary precursor.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: Genghao Liu, Changdong Li, Yongguang Li, Weiquan Li, Dingshan Ruan, Yong Cai
  • Publication number: 20240021903
    Abstract: The present disclosure discloses a method for recycling iron phosphate waste and use thereof. The method includes: mixing the iron phosphate waste with an acid liquid for dissolution to obtain an iron-phosphorus solution; taking a small portion of the iron-phosphorus solution to prepare an iron phosphate precipitating agent; adding the iron phosphate precipitating agent to a remaining portion of the iron-phosphorus solution to react to obtain an iron phosphate dihydrate precipitate; and keeping a portion of the iron phosphate dihydrate precipitate as a precipitating agent for a reaction in a subsequent batch, and preparing a remaining portion of the iron phosphate dihydrate precipitate into anhydrous iron phosphate. In the present disclosure, an iron phosphate precipitating agent is prepared and used for the subsequent preparation of iron phosphate, and iron phosphate obtained in each preparation can be used for the next preparation of iron phosphate.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Chunxia Tang, Changdong Li, Shenghe Tang, Yanchao Qiao, Dingshan Ruan
  • Publication number: 20240021904
    Abstract: The present disclosure belongs to the technical field of battery recycling, and discloses a recycling method and use of lithium iron phosphate (LFP) waste. The method includes the following steps: mixing the LFP waste with water to prepare a slurry; adjusting a pH of the slurry to higher than 7.0 with an alkali, and heating to react; filtering a resulting mixture to obtain a filter residue; dissolving the filter residue in an acid, and filtering to obtain a filtrate; adding an oxalate-containing solution to react, and aging and filtering a resulting mixture to obtain a filter cake and a precipitation mother liquor; and subjecting the filter cake to slurrying, washing, and free water removal to obtain ferrous oxalate.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Jinliang Duan, Changdong Li, Yang Xia, Dingshan Ruan, Ruokui Chen, Yanchao Qiao
  • Publication number: 20240018012
    Abstract: The present disclosure belongs to the technical field of metal oxide materials, and discloses a synthesis method of cobalt hydroxide and cobalt hydroxide. The synthesis method includes: (1) stirring and heating ammonium citrate, introducing a protective gas, adding a cobalt salt and a mixed alkali liquor to allow a reaction, and adjusting a pH to obtain a cobalt hydroxide slurry; and (2) subjecting the cobalt hydroxide slurry to alkali-leaching, filtering, and slurrying a resulting filter residue; and washing a resulting slurry with a detergent, and drying the resulting slurry to obtain the cobalt hydroxide. In the present disclosure, ammonium citrate is used as a base solution, and a cobalt solution and a mixed alkali liquor are added to synthesize a cobalt hydroxide slurry in one step under a protective atmosphere.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 18, 2024
    Inventors: Haihan Hu, Changdong Li, Genghao Liu, Xinghua Lu, Dingshan Ruan, Yong Cai
  • Patent number: 11876209
    Abstract: Disclosed are a pre-lithiated lithium ion positive electrode material, a preparation method therefor and use thereof. The lithium ion positive electrode material has a chemical formula of Li2O/[A(3-x)Mex]1/3-LiAO2, wherein A comprises M, and wherein M is at least one of Ni, Co, and Mn; and wherein Me is at least one of Ni, Mn, Al, Mg, Ti, Zr, Y, Mo, W, Na, Ce, Cr, Zn or Fe; and wherein 0<x<0.1. The material is co-doped with multiple elements, and these elements act synergistically to inhibit the irreversible phase change at a high voltage and improve the stability of the structure of a substrate. The spinel phase A(3-x)MexO4 structure contains the doping elements, which work together to improve the interfacial activity of the material and introduce more electrochemically active sites.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 16, 2024
    Assignees: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP VEHICLES RECYCLING CO. LTD.
    Inventors: Bin Li, Dingshan Ruan, Linlin Mao, Shenghe Tang, Xingyu Wu, Changdong Li
  • Publication number: 20240014382
    Abstract: The present disclosure belongs to the technical field of battery materials, and discloses a silicon/carbon composite anode material, and a preparation method and use thereof. The preparation method includes the following steps: S1. dissolving a graphite anode powder in an acid solution, and conducting solid-liquid separation (SLS) to obtain a precipitate; and washing and drying the precipitate, adding a reducing agent, and subjecting a resulting mixture to heat treatment to obtain a purified graphite material; and S2. mixing a modified silicon powder with the graphite material, adding a resulting mixture to a polyimide (PI)-containing N,N-dimethylformamide (DMF) solution, and stirring; and subjecting a resulting mixture to distillation and then to carbonization to obtain the silicon/carbon composite anode material.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Applicants: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.
    Inventors: Xia Fan, Changdong Li, Zhenhua Zhang, Linlin Mao, Dingshan Ruan, Yong Cai
  • Publication number: 20230411596
    Abstract: The invention belongs to the technical field of batteries, and discloses a preparation method and application of a lithium cobalt oxide soft-pack battery. The preparation method comprises the following steps: preparation of a lithium cobalt oxide positive electrode; preparation of a graphite negative electrode; preparation of an aluminum plastic film; screening and tab welding the positive and negative electrode, then winding core and packing, injecting an electrolyte to a resulting pack, perform first sealing, formation, second sealing; followed by capacity grading to obtain the lithium cobalt oxide soft pack battery. The preparation method for the lithium cobalt oxide soft-pack battery in a laboratory environment at room temperature provided by the present invention has simple operation and low environmental requirements, can be used in laboratories without dry room conditions, and reduces research and development cost and laboratory maintenance cost.
    Type: Application
    Filed: August 2, 2023
    Publication date: December 21, 2023
    Inventors: Xingyu Wu, Changdong Li, Dingshan Ruan, Linlin Mao, Maohua Feng, Bin Li
  • Publication number: 20230399238
    Abstract: The disclosure discloses a precursor with a transformed crystal form and a preparation method thereof. The preparation method includes: (1) heating a carbonate solution, a cobalt salt to allow a reaction, and spray adding a carbonate solution to allow a reaction to obtain a cobalt carbonate slurry; (2) allowing the slurry to stand, spray adding a cobalt salt and a carbonate solution, and spray adding a cobalt salt using a single spray head at a flow rate of 1 m3/h to 3 m3/h and a carbonate solution using no less than three spray heads each at a flow rate of 0.2 m3/h to 5 m3/h to obtain cobalt carbonate with a transformed crystal form; and (3) further spray adding a cobalt salt and a carbonate solution to the cobalt carbonate with a transformed crystal form, heating to allow a constant-temperature reaction, and washing and calcining a product.
    Type: Application
    Filed: August 28, 2023
    Publication date: December 14, 2023
    Inventors: Bin Li, Changdong Li, Xinghua Lu, Weijian Liu, Yong Cai, Dingshan Ruan
  • Publication number: 20230395888
    Abstract: A method for recovering lithium battery slurry, the method comprising: pretreating lithium battery slurry, and then subjecting the pretreated lithium battery slurry to centrifugal spray drying to separate a solid phase and a solvent. A device for the recovery of lithium battery slurry is a centrifugal spray drying system, and comprises a spray chamber (100), a cyclone separator (200), a condenser (400), a condensate storage tank (500), and a rectification tower (600); the system improves upon original centrifugal spray drying devices, and is designed to combine the processes of centrifugal spray drying and NMP condensation recovery, such that NMP can be directly recovered after separation of positive electrode material and the NMP.
    Type: Application
    Filed: June 6, 2022
    Publication date: December 7, 2023
    Inventors: Peichao Ning, Changdong Li, You Zhou, Qiang Li, Dingshan Ruan, Song Chen