Patents by Inventor Dingying Shan

Dingying Shan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240112971
    Abstract: An integrated circuit (IC) device comprises a substrate comprising a glass core. The glass core comprises a first surface and a second surface opposite the first surface, and a first sidewall between the first surface and the second surface. The glass core may include a conductor within a through-glass via extending from the first surface to the second surface and a build-up layer. The glass cord comprises a plurality of first areas of the glass core and a plurality of laser-treated areas on the first sidewall. A first one of the plurality of laser-treated areas may be spaced away from a second one of the plurality of laser-treated areas. A first area may comprise a first nanoporosity and a laser-treated area may comprise a second nanoporosity, wherein the second nanoporosity is greater than the first nanoporosity.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Yiqun Bai, Dingying Xu, Srinivas Pietambaram, Hongxia Feng, Gang Duan, Xiaoying Guo, Ziyin Lin, Bai Nie, Haobo Chen, Kyle Arrington, Bohan Shan
  • Publication number: 20240071848
    Abstract: Embodiments disclosed herein include package substrates. In an embodiment, the package substrate comprises a core, where the core comprises glass. In an embodiment, a first layer is under the core, a second layer is over the core, and a via is through the core, the first layer, and the second layer. In an embodiment a width of the via through the core is equal to a width of the via through the first layer and the second layer. In an embodiment, the package substrate further comprises a first pad under the via, and a second pad over the via.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Bohan SHAN, Haobo CHEN, Brandon C. MARIN, Srinivas V. PIETAMBARAM, Bai NIE, Gang DUAN, Kyle ARRINGTON, Ziyin LIN, Hongxia FENG, Yiqun BAI, Xiaoying GUO, Dingying David XU, Jeremy D. ECTON, Kristof DARMAWIKARTA, Suddhasattwa NAD
  • Patent number: 11793893
    Abstract: A compound comprising an oligomer formed from a biocompatible multifunctional carboxylic acid comprising a hydroxyl group and at least one carboxylic acid, an polyol (e.g., an aliphatic diol), and a linker. One or more conductive oligomers (e.g., polyanilines) are covalently bonded to the oligomer. The compounds can have various forms (e.g., articles of manufacture, films, scaffolds, and the like). The compounds have various uses. For example, the compounds are used in photoacoustic imaging methods.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: October 24, 2023
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jian Yang, Dingying Shan
  • Publication number: 20230024494
    Abstract: Sensitive detection of IgG antibodies against SARS-CoV-2 is important to assessing immune responses to viral infection or vaccination and immunity duration. Antibody assays using non-invasive body fluids such as saliva could facilitate mass testing including young children, elderly and those who resist blood draws, and easily allowing longitudinal testing/monitoring of antibodies over time. Here, we developed a new lateral flow (nLF) assay that sensitively detects SARS-CoV-2 IgG antibodies in the saliva samples of vaccinated individuals and previous COVID-19 patients. The 25 minutes nLF assay detected anti-spike protein (anti-S1) IgG in saliva samples with 100% specificity and high sensitivity from both vaccinated (99.51% for samples ?19 days post 1st Pfizer or Moderna mRNA vaccine dose) and infected individuals.
    Type: Application
    Filed: May 27, 2022
    Publication date: January 26, 2023
    Inventors: Meijie Tang, Dingying Shan, Hongjie Dai
  • Publication number: 20190282713
    Abstract: In one aspect, compositions are described herein. In some embodiments, a composition described herein comprises, consists of, or consists essentially of an MRI-active or MRI-sensitive polymer or oligomer formed from (i) a non-alkoxylated and non-alkenoxylated citric acid, citrate, or ester/amide of citric acid, and optionally an alkoxylated or alkenoxylated citric acid, citrate, or ester/amide of citric acid, (ii) a polyol/polyamine such as a diol/diamine, (iii) a monomer comprising an MRI contrast agent, and (iv) an amino acid monomer. The polymer or oligomer may be photoluminescent and MRI-sensitive. In another aspect, imaging methods utilizing the compositions described herein are described. In another aspect, scaffolds, grafts, and films comprising, consisting of, or consisting essentially of the compositions described herein are described.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 19, 2019
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jian Yang, Dingying Shan, Nanyin Zhang
  • Publication number: 20190231909
    Abstract: A compound comprising an oligomer formed from a biocompatible multifunctional carboxylic acid comprising a hydroxyl group and at least one carboxylic acid, an polyol (e.g., an aliphatic diol), and a linker. One or more conductive oligomers (e.g., polyanilines) are covalently bonded to the oligomer. The compounds can have various forms (e.g., articles of manufacture, films, scaffolds, and the like). The compounds have various uses. For example, the compounds are used in photoacoustic imaging methods.
    Type: Application
    Filed: October 3, 2017
    Publication date: August 1, 2019
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Jian Yang, Dingying Shan
  • Patent number: 10241258
    Abstract: A biocompatible and biodegradable polymeric step-index optical fiber includes a core and a cladding around the core. The core is made from a core material fabricated by bonding a citric acid and at least a first monomer using a synthesis process. The cladding is made from a cladding material fabricated by bonding the citric acid and at least a second monomer using the synthesis process. The core has a refractive index higher than that of the cladding, while a difference between an initial modulus of the core and the cladding is preferably less than 30% and a difference between the biodegradation rates of the core and cladding is preferably less than 30% after about 4 weeks. Optical properties of the core and cladding are tunable by adjusting monomer ratios, choices of monomers or cross-linking degrees.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: March 26, 2019
    Assignee: The Penn State Research Foundation
    Inventors: Jian Yang, Zhiwen Liu, Dingying Shan, Chenji Zhang
  • Publication number: 20180299612
    Abstract: A biocompatible and biodegradable polymeric step-index optical fiber includes a core and a cladding around the core. The core is made from a core material fabricated by bonding a citric acid and at least a first monomer using a synthesis process. The cladding is made from a cladding material fabricated by bonding the citric acid and at least a second monomer using the synthesis process. The core has a refractive index higher than that of the cladding, while a difference between an initial modulus of the core and the cladding is preferably less than 30% and a difference between the biodegradation rates of the core and cladding is preferably less than 30% after about 4 weeks. Optical properties of the core and cladding are tunable by adjusting monomer ratios, choices of monomers or cross-linking degrees.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 18, 2018
    Inventors: Jian Yang, Zhiwen Liu, Dingying Shan, Chenji Zhang