Patents by Inventor Dipak C. Kothari

Dipak C. Kothari has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6596780
    Abstract: Hydrocarbonaceous fuel, such as coal, oil or gas, is gasified to produce syngas comprising H2 and CO, scrubbed free of particles, and saturated with water. The syngas is then treated in an acid gas removal unit as desired to remove any impurities in the syngas. After processing the syngas in the AGR, it is routed to a hydrocarbon synthesis reactor. In the hydrocarbon synthesis reactor, the bulk of the H2 and CO in the syngas is converted to synthetic hydrocarbons, the makeup of which is generally dependent on the type catalyst used in the reactor. The unreacted gas, or tailgas, exiting the reactor, is sent to the gas turbine as fuel. Optionally, N2 or natural gas can be added to the tailgas prior to the combustion turbine. N2 may also optionally be mixed with the hydrocarbon synthesis reactor feed to help control the reaction temperature. After being combusted in the combustor of a gas turbine, the combustion products are expanded to produce power.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: July 22, 2003
    Assignee: Texaco Inc.
    Inventors: Fred C. Jahnke, Dipak C. Kothari, Lalit S. Shah, William P. Volk, Kamlesh B. Vakil, Rui Song, Gayla D. Hamby
  • Publication number: 20030083391
    Abstract: Hydrocarbonaceous fuel, such as coal, oil or gas, is gasified to produce syngas comprising H2 and CO, scrubbed free of particles, and saturated with water. The syngas is then treated in an acid gas removal unit as desired to remove any impurities in the syngas. After processing the syngas in the AGR, it is routed to a hydrocarbon synthesis reactor. In the hydrocarbon synthesis reactor, the bulk of the H2 and CO in the syngas is converted to synthetic hydrocarbons, the makeup of which is generally dependent on the type catalyst used in the reactor. The unreacted gas, or tailgas, exiting the reactor, is sent to the gas turbine as fuel. Optionally, N2 or natural gas can be added to the tailgas prior to the combustion turbine. N2 may also optionally be mixed with the hydrocarbon synthesis reactor feed to help control the reaction temperature. After being combusted in the combustor of a gas turbine, the combustion products are expanded to produce power.
    Type: Application
    Filed: October 23, 2001
    Publication date: May 1, 2003
    Inventors: Fred C. Jahnke, Dipak C. Kothari, Lalit S. Shah, William P. Volk, Kamlesh B. Vakil, Rui Song, Gayla D. Hamby
  • Patent number: 4990773
    Abstract: The invention is a method of evaluating a sample of an underground formation such as drill cuttings to determine the producibility of any hydrocarbons present in the formation by solvating a sample in a polar solvent which will solvate asphaltenes, solvating the sample in an aliphatic solvent which will solvate most crude fractions without solvating asphaltenes, quantitatively measuring the emission fluorescence at a wavelength below 400 nm of both solvated samples at an excitation wavelength at which most petroleum compounds fluoresce, and determining the producibility of any hydrocarbon present in the sample by comparing the emission fluorescence of the two samples to previous correlations made between fluorescence and known producibility.
    Type: Grant
    Filed: December 1, 1988
    Date of Patent: February 5, 1991
    Assignee: Texaco Inc.
    Inventors: Irwin R. Supernaw, Dipak C. Kothari