Patents by Inventor Dirk Baars
Dirk Baars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12148997Abstract: A waveguide antenna system, includes: an electromagnetic, EM, transition portion having a transition region having a signal feed interface and an open waveguide section, the EM transition portion configured to couple EM energy from the signal feed interface to a guided waveguide mode of EM energy to the open waveguide section via the transition region; and a leaky waveguide antenna portion configured and disposed to radiate electromagnetic energy received from the open waveguide section; wherein the EM transition portion is electromagnetically coupled to the leaky waveguide antenna portion, the EM transition portion being configured to support a transfer of electromagnetic energy from a signal feed structure to the leaky waveguide antenna portion.Type: GrantFiled: September 13, 2022Date of Patent: November 19, 2024Assignee: ROGERS CORPORATIONInventors: Sergio Clavijo, John Sanford, Karl Edward Sprentall, Dirk Baars, Jared Kenneth Spink, Pramod Srinivas Bhat
-
Publication number: 20240002554Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.Type: ApplicationFiled: August 30, 2023Publication date: January 4, 2024Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
-
Patent number: 11787878Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.Type: GrantFiled: June 3, 2022Date of Patent: October 17, 2023Assignee: ROGERS CORPORATIONInventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
-
Publication number: 20230226751Abstract: A stereolithography method of manufacture of a polymer structure having a spatially gradient dielectric constant, including: providing a volume of a liquid, radiation-curable composition; irradiating a portion of the liquid, radiation-curable composition with activating radiation in a pattern to form a layer of the polymer structure; contacting the layer with the liquid, radiation-curable composition; irradiating the liquid, radiation-curable composition with activating radiation in a pattern to form a second layer on the first layer; and repeating the contacting and irradiating to form the polymer structure, wherein the polymer structure comprises a plurality of unit cells wherein each unit cell is integrally connected with an adjacent unit cell, each unit cell is defined by a plurality of trusses formed by the irradiation, wherein the trusses are integrally connected with each other at their respective ends, and the trusses of each unit cell are dimensioned to provide the spatially gradient dielectric constType: ApplicationFiled: March 29, 2023Publication date: July 20, 2023Inventors: Trevor Polidore, Sergio Clavijo, Dirk Baars
-
Patent number: 11637377Abstract: A method of making a dielectric, Dk, electromagnetic, EM, structure, includes: providing a first mold portion comprising substantially identical ones of a first plurality of recesses arranged in an array; filling the first plurality of recesses with a curable first Dk composition having a first average dielectric constant greater than that of air after full cure; placing a substrate on top of and across multiple ones of the first plurality of recesses filled with the first Dk composition, and at least partially curing the curable first Dk composition; and, removing the substrate with the at least partially cured first Dk composition from the first mold portion, resulting in an assembly having the substrate and a plurality of Dk forms including the at least partially cured first Dk composition, each of the plurality of Dk forms having a three dimensional, 3D, shape defined by corresponding ones of the first plurality of recesses.Type: GrantFiled: November 22, 2019Date of Patent: April 25, 2023Assignee: ROGERS CORPORATIONInventors: Gianni Taraschi, Kristi Pance, Stephen O'Connor, Christopher Brown, Trevor Polidore, Allen F. Horn, III, Dirk Baars, Roshin Rose George, Jared Duperre, Shailesh Pandey, Karl E. Sprentall, Shawn P. Williams, William Blasius
-
Publication number: 20230085413Abstract: A waveguide antenna system, includes: an electromagnetic, EM, transition portion having a transition region having a signal feed interface and an open waveguide section, the EM transition portion configured to couple EM energy from the signal feed interface to a guided waveguide mode of EM energy to the open waveguide section via the transition region; and a leaky waveguide antenna portion configured and disposed to radiate electromagnetic energy received from the open waveguide section; wherein the EM transition portion is electromagnetically coupled to the leaky waveguide antenna portion, the EM transition portion being configured to support a transfer of electromagnetic energy from a signal feed structure to the leaky waveguide antenna portion.Type: ApplicationFiled: September 13, 2022Publication date: March 16, 2023Inventors: Sergio Clavijo, John Sanford, Karl Edward Sprentall, Dirk Baars, Jared Kenneth Spink, Pramod Srinivas Bhat
-
Patent number: 11545753Abstract: An electromagnetic, EM, device, includes: a substrate having a dielectric layer and a first conductive layer at a first side of the substrate, the substrate having a via that extends at least partially through the substrate from the first side toward an opposing second side of the substrate; at least one dielectric structure having at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having a first average dielectric constant, the at least one dielectric structure further having a second dielectric portion that is contiguous with the first dielectric portion; wherein the second dielectric portion extends into the via of the substrate, the via having a mechanical interlock surface; and wherein the at least one dielectric structure includes a mechanical interlock between the second dielectric portion and the mechanical interlock surface of the via of the substrate.Type: GrantFiled: December 6, 2021Date of Patent: January 3, 2023Assignee: ROGERS CORPORATIONInventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
-
Patent number: 11482790Abstract: A dielectric lens, includes: a three-dimensional, 3D, body of dielectric material having a spatially varying dielectric constant, Dk; the 3D body having at least three regions R(i) with local maxima of dielectric constant values Dk(i) relative to surrounding regions of respective ones of the at least three regions R(i), locations of the at least three regions R(i) being defined by local coordinates of: azimuth angle(i), zenith angle(i), and radial distance(i), relative to a particular common point of origin associated with the 3D body, where (i) is an index that ranges from 1 to at least 3; wherein the spatially varying Dk of the 3D body is configured to vary as a function of the zenith angle between a first region R(1) and a second region R(2) at a given azimuth angle and a given radial distance.Type: GrantFiled: March 30, 2021Date of Patent: October 25, 2022Assignee: ROGERS CORPORATIONInventors: Trevor Polidore, Sergio Clavijo, Dirk Baars, John Sanford
-
Publication number: 20220332043Abstract: A stereolithography method of manufacture of a polymer structure having a spatially gradient dielectric constant, including: providing a volume of a liquid, radiation-curable composition; irradiating a portion of the liquid, radiation-curable composition with activating radiation in a pattern to form a layer of the polymer structure; contacting the layer with the liquid, radiation-curable composition; irradiating the liquid, radiation-curable composition with activating radiation in a pattern to form a second layer on the first layer; and repeating the contacting and irradiating to form the polymer structure, wherein the polymer structure comprises a plurality of unit cells wherein each unit cell is integrally connected with an adjacent unit cell, each unit cell is defined by a plurality of trusses formed by the irradiation, wherein the trusses are integrally connected with each other at their respective ends, and the trusses of each unit cell are dimensioned to provide the spatially gradient dielectric constType: ApplicationFiled: July 1, 2022Publication date: October 20, 2022Inventors: Trevor Polidore, Sergio Clavijo, Dirk Baars
-
Publication number: 20220298270Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.Type: ApplicationFiled: June 3, 2022Publication date: September 22, 2022Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
-
Patent number: 11407169Abstract: A stereolithography method of manufacture of a polymer structure having a spatially gradient dielectric constant, including: providing a volume of a liquid, radiation-curable composition; irradiating a portion of the liquid, radiation-curable composition with activating radiation in a pattern to form a layer of the polymer structure; contacting the layer with the liquid, radiation-curable composition; irradiating the liquid, radiation-curable composition with activating radiation in a pattern to form a second layer on the first layer; and repeating the contacting and irradiating to form the polymer structure, wherein the polymer structure comprises a plurality of unit cells wherein each unit cell is integrally connected with an adjacent unit cell, each unit cell is defined by a plurality of trusses formed by the irradiation, wherein the trusses are integrally connected with each other at their respective ends, and the trusses of each unit cell are dimensioned to provide the spatially gradient dielectric constType: GrantFiled: October 18, 2019Date of Patent: August 9, 2022Assignee: ROGERS CORPORATIONInventors: Trevor Polidore, Sergio Clavijo, Dirk Baars
-
Patent number: 11401353Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.Type: GrantFiled: May 29, 2020Date of Patent: August 2, 2022Assignee: ROGERS CORPORATIONInventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
-
Publication number: 20220158351Abstract: An electromagnetic, EM, device, includes: a substrate having a dielectric layer and a first conductive layer at a first side of the substrate, the substrate having a via that extends at least partially through the substrate from the first side toward an opposing second side of the substrate; at least one dielectric structure having at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having a first average dielectric constant, the at least one dielectric structure further having a second dielectric portion that is contiguous with the first dielectric portion; wherein the second dielectric portion extends into the via of the substrate, the via having a mechanical interlock surface; and wherein the at least one dielectric structure includes a mechanical interlock between the second dielectric portion and the mechanical interlock surface of the via of the substrate.Type: ApplicationFiled: December 6, 2021Publication date: May 19, 2022Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
-
Patent number: 11239563Abstract: In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate.Type: GrantFiled: April 29, 2019Date of Patent: February 1, 2022Assignee: ROGERS CORPORATIONInventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
-
Publication number: 20220029297Abstract: A method of making a dielectric, Dk, electromagnetic, EM, structure, includes: providing a first mold portion comprising substantially identical ones of a first plurality of recesses arranged in an array; filling the first plurality of recesses with a curable first Dk composition having a first average dielectric constant greater than that of air after full cure; placing a substrate on top of and across multiple ones of the first plurality of recesses filled with the first Dk composition, and at least partially curing the curable first Dk composition; and, removing the substrate with the at least partially cured first Dk composition from the first mold portion, resulting in an assembly having the substrate and a plurality of Dk forms including the at least partially cured first Dk composition, each of the plurality of Dk forms having a three dimensional, 3D, shape defined by corresponding ones of the first plurality of recesses.Type: ApplicationFiled: November 22, 2019Publication date: January 27, 2022Inventors: Gianni Taraschi, Kristi Pance, Stephen O'Connor, Christopher Brown, Trevor Polidore, Allen F. Horn, III, Dirk Baars, Roshin Rose George, Jared Duperre, Shailesh Pandey, Karl E. Sprentall, Shawn P. Williams, William Blasius
-
Publication number: 20210328356Abstract: A dielectric lens, includes: a three-dimensional, 3D, body of dielectric material having a spatially varying dielectric constant, Dk; the 3D body having at least three regions R(i) with local maxima of dielectric constant values Dk(i) relative to surrounding regions of respective ones of the at least three regions R(i), locations of the at least three regions R(i) being defined by local coordinates of: azimuth angle(i), zenith angle(i), and radial distance(i), relative to a particular common point of origin associated with the 3D body, where (i) is an index that ranges from 1 to at least 3; wherein the spatially varying Dk of the 3D body is configured to vary as a function of the zenith angle between a first region R(1) and a second region R(2) at a given azimuth angle and a given radial distance.Type: ApplicationFiled: March 30, 2021Publication date: October 21, 2021Inventors: Trevor Polidore, Sergio Clavijo, Dirk Baars, John Sanford
-
Publication number: 20200377628Abstract: A photocurable composition for stereolithographic three-dimensional printing, wherein the photocurable composition comprises a photoreactive oligomer component comprising a hydrophobic oligomer comprising a photoreactive end group, a photoreactive monomer component comprising a photoreactive monomer having a photoreactive end group, and a photoinitiation composition comprising a photoinitiator; the photocurable composition has a viscosity of 250 to 10,000 centipoise at 22° C., determined using a Brookfield viscometer; and the photocured composition has a dielectric loss of less than 0.010, preferably less than 0.008, more preferably less than 0.006, most preferably less than 0.004, each determined by split-post dielectric resonator testing at 10 gigahertz at 23° C.Type: ApplicationFiled: May 29, 2020Publication date: December 3, 2020Inventors: Trevor Polidore, Dirk Baars, Thomas A. Koes, Bruce Fitts, Murali Sethumadhavan
-
Publication number: 20200122387Abstract: A stereolithography method of manufacture of a polymer structure having a spatially gradient dielectric constant, including: providing a volume of a liquid, radiation-curable composition; irradiating a portion of the liquid, radiation-curable composition with activating radiation in a pattern to form a layer of the polymer structure; contacting the layer with the liquid, radiation-curable composition; irradiating the liquid, radiation-curable composition with activating radiation in a pattern to form a second layer on the first layer; and repeating the contacting and irradiating to form the polymer structure, wherein the polymer structure comprises a plurality of unit cells wherein each unit cell is integrally connected with an adjacent unit cell, each unit cell is defined by a plurality of trusses formed by the irradiation, wherein the trusses are integrally connected with each other at their respective ends, and the trusses of each unit cell are dimensioned to provide the spatially gradient dielectric constType: ApplicationFiled: October 18, 2019Publication date: April 23, 2020Inventors: Trevor Polidore, Sergio Clavijo, Dirk Baars
-
Publication number: 20190341696Abstract: In an embodiment, an electromagnetic device, comprises a substrate a substrate comprising a dielectric layer and a first conductive layer; at least one dielectric structure comprising at least one non-gaseous dielectric material that forms a first dielectric portion that extends outward from the first side of the substrate, the first dielectric portion having an average dielectric constant and an optional second dielectric portion that extends into an optional via. The at least one dielectric structure is bonded to the substrate by at least one of: a mechanical interlock between the second dielectric portion and the substrate due to the at least one interlocking slot comprising a retrograde surface; an intermediate layer located in between the dielectric structure and the substrate having a roughened surface; or an adhesive material located in between the dielectric structure and the substrate.Type: ApplicationFiled: April 29, 2019Publication date: November 7, 2019Inventors: Stephen O'Connor, Gianni Taraschi, Christopher Brown, Kristi Pance, Karl E. Sprentall, Bruce Fitts, Dirk Baars, William Blasius, Murali Sethumadhavan, Roshin Rose George, Michael S. White, Michael Lunt, Sam Henson, John Dobrick
-
Publication number: 20070093035Abstract: Use of a roughened dielectric layer between a dielectric substrate and a conductive layer, which allows increased adhesion between layers without the conductor loss associated with roughened conductor layers, as well as improved accuracy in etching. The method is widely applicable to a variety of dielectric substrate and conductive layer constructions, and can be readily tuned to provide the desired level of adhesion and other advantageous properties.Type: ApplicationFiled: October 19, 2006Publication date: April 26, 2007Inventors: Robert Daigle, Amit Das, Sankar Paul, Dirk Baars, Allen Horn