Patents by Inventor Dirk H. Dreissig

Dirk H. Dreissig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9105401
    Abstract: A wet electrolytic capacitor is provided. The capacitor contains an anode comprising an anodically oxidized pellet formed from a pressed and sintered powder, a cathode that contains a metal substrate coated with a conductive polymer, and a working electrolyte in communication with the anode and the cathode. The working electrolyte is in the form of a gel and comprises an ammonium salt of an organic acid, inorganic oxide particles, an acid, and a solvent system that comprises water. The working electrolyte has a pH value of from about 5.0 to about 8.0.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: August 11, 2015
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, James Steven Bates, Andrew Paul Ritter, Zebbie Lynn Sebald, Mitchell D. Weaver, Robert Hazen Pease
  • Patent number: 9053861
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 9, 2015
    Assignee: AVX Corporation
    Inventors: Mitchell D. Weaver, Dirk H. Dreissig, Jan Petrzilek, Martin Biler, David Masheder, Ian Pinwill
  • Patent number: 8971020
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains a conductive copolymer having at least one thiophene repeating unit, as well as a pyrrole repeating unit and/or aniline repeating unit.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: March 3, 2015
    Assignee: AVX Corporation
    Inventors: Martin Biler, Jan Petrzilek, Dirk H. Dreissig, Mitchell D. Weaver
  • Patent number: 8824121
    Abstract: A wet electrolytic capacitor including a porous anode body containing a dielectric layer, a cathode containing a metal substrate on which is disposed a conductive polymer coating, and an electrolyte is provided. The conductive polymer coating is in the form of a dispersion of particles having an average diameter of from about 1 to about 500 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 300 nanometers. The relatively small size of the particles used in the coating increases the surface area that is available for adhering to the metal substrate, which in turn improves mechanical robustness and electrical performance (e.g., reduced equivalent series resistance and leakage current). Another benefit of employing such a dispersion for the conductive polymer coating is that it may be able to better cover crevices of the metal substrate and improve electrical contact.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: September 2, 2014
    Assignee: AVX Corporation
    Inventors: Martin Biler, Dirk H. Dreissig, Frantisek Priban, Jan Petrzilek
  • Patent number: 8605411
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, an electrolyte, and a cathode containing a metal substrate that is abrasive blasted is provided. Abrasive blasting may accomplish a variety of different purposes. For example, it may result in a surface that is substantially uniform and macroscopically smooth, thereby increasing the consistency of conductive coatings formed thereon. While possessing a certain degree of smoothness, the abrasive blasted surface is nevertheless micro-roughened so that it contains a plurality of pits. The pits provide an increased surface area, thereby allowing for increased cathode capacitance for a given size and/or capacitors with a reduced size for a given capacitance. A conductive coating that contains a substituted polythiophene is disposed on the micro-roughened surface.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: December 10, 2013
    Assignee: AVX Corporation
    Inventors: Martin Biler, John Galvagni, Dirk H. Dreissig, Zebbie Lynn Sebald, Frantisek Priban
  • Publication number: 20130242464
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating contains a conductive copolymer having at least one thiophene repeating unit, as well as a pyrrole repeating unit and/or aniline repeating unit.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Jan Petrzilek, Dirk H. Dreissig, Mitchell D. Weaver
  • Publication number: 20130242465
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX Corporation
    Inventors: Mitchell D. Weaver, Dirk H. Dreissig, Jan Petrzilek, Martin Biler, David Masheder, Ian Pinwill
  • Patent number: 8514547
    Abstract: A wet electrolytic capacitor that contains a sintered anode positioned with an interior space of a metal casing is provided. The anode and metal casing are of a size such that the anode occupies a substantial portion of the volume of the interior space. More particularly, the anode typically occupies about 70 vol. % or more, in some embodiments about 75 vol. % or more, in some embodiments from about 80 vol. % to about 98 vol. %, and in some embodiments, from about 85 vol. % to 95 vol. % of the interior space. Among other things, the use of an anode that occupies such a large portion of the interior space enhances volumetric efficiency and other electrical properties of the resulting capacitor.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: August 20, 2013
    Assignee: AVX Corporation
    Inventors: John Galvagni, Tomas Karnik, James Steven Bates, Richard Baker, Dirk H. Dreissig, Andrew Paul Ritter
  • Patent number: 8405956
    Abstract: A wet electrolytic capacitor that includes a porous anode body that contains a dielectric layer formed by anodic oxidation; a cathode that includes a metal substrate coated with a conductive polymer; and an aqueous electrolyte disposed in contact with the cathode and the anode is provided. The electrolyte includes a salt of a weak organic acid and water. The electrolyte has a pH of from about 5.0 to about 8.0 and an ionic conductivity of from about 0.5 to about 80 milliSiemens per centimeter or more, determined at a temperature of 25° C.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: March 26, 2013
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, John Galvagni
  • Patent number: 8345406
    Abstract: An electric double layer capacitor that contains at least one electrochemical cell is provided. The cell contains electrodes (e.g., two electrodes) that each contain a porous matrix of electrochemically-active particles (e.g., carbon). An aqueous-based electrolyte is disposed in contact with the porous matrix. In accordance with the present invention, the electrolyte is provided with an anionic polymer that serves as binding agent for the electrochemically active particles and thus reduces electrolyte loss, especially at higher temperatures. Because the polymer is anionic in nature, it is generally hydrophilic and thus can retain its binding properties in the presence of water. The anionic nature of the polymer also allows it to remain stable in the presence of a corrosive polyprotic acid, which is employed in the electrolyte to enhance charge density. Thus, as a result of the present invention, a capacitor may be formed that is capable of exhibiting good electrical performance (e.g.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 1, 2013
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, Jonathan R. Knopsnyder, Jessica M. Smith, Lee Shinaberger, Bharat Rawal
  • Patent number: 8223473
    Abstract: An electrolytic capacitor that contains an anodically oxidized porous anode, cathode, and an electrolyte that contains an alkali metal salt and ionically conductive polymer is provided. The alkali metal salt forms a complex with the ionically conductive polymer and thereby improves its ionic conductivity, particularly at higher temperatures. The electrolyte also contains an organic solvent that reduces the viscosity of the electrolyte and helps lower the potential barrier to metal ion transport within the electrolyte to improve conductivity. By selectively controlling the relative amount of each of these components, the present inventors have discovered that a highly ionically conductive electrolyte may be formed that is also in the form of a viscous liquid. The liquid nature of the electrolyte enables it to more readily enter the pores of the anode via capillary forces and improve specific capacitance. Further, although a liquid, its viscous nature may inhibit the likelihood of leakage.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: July 17, 2012
    Assignee: AVX Corporation
    Inventors: Dirk H. Dreissig, John Galvagni
  • Publication number: 20120106029
    Abstract: A wet electrolytic capacitor that contains a sintered anode positioned with an interior space of a metal casing is provided. The anode and metal casing are of a size such that the anode occupies a substantial portion of the volume of the interior space. More particularly, the anode typically occupies about 70 vol. % or more, in some embodiments about 75 vol. % or more, in some embodiments from about 80 vol. % to about 98 vol. %, and in some embodiments, from about 85 vol. % to 95 vol. % of the interior space. Among other things, the use of an anode that occupies such a large portion of the interior space enhances volumetric efficiency and other electrical properties of the resulting capacitor.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: AVX CORPORATION
    Inventors: John Galvagni, Tomas Karnik, James Steven Bates, Richard Baker, Dirk H. Dreissig, Andrew Paul Ritter
  • Publication number: 20120069490
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, a cathode containing a metal substrate on which is disposed a conductive polymer coating, and an electrolyte is provided. The conductive polymer coating is in the form of a dispersion of particles having a relatively small size, such as an average diameter of from about 1 to about 500 nanometers, in some embodiments from about 5 to about 400 nanometers, and in some embodiments, from about 10 to about 300 nanometers. The relatively small size of the particles used in the coating increases the surface area that is available for adhering to the metal substrate, which in turn improves mechanical robustness and electrical performance (e.g., reduced equivalent series resistance and leakage current). Another benefit of employing such a dispersion for the conductive polymer coating is that it may be able to better cover crevices of the metal substrate and improve electrical contact.
    Type: Application
    Filed: July 28, 2011
    Publication date: March 22, 2012
    Applicant: AVX CORPORATION
    Inventors: Martin Biler, Dirk H. Dreissig, Frantisek Priban, Jan Petrzilek
  • Publication number: 20100302709
    Abstract: A wet electrolytic capacitor comprising a porous anode body that contains a dielectric layer formed by anodic oxidation; a cathode comprising a metal substrate coated with a conductive polymer; and an aqueous electrolyte disposed in contact with the cathode and the anode is provided. The electrolyte comprises a salt of a weak organic acid and water. The electrolyte has a pH of from about 5.0 to about 8.0 and an ionic conductivity of from about 0.5 to about 80 milliSiemens per centimeter or more, determined at a temperature of 25° C.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 2, 2010
    Applicant: AVX CORPORATION
    Inventors: Dirk H. Dreissig, John Galvagni
  • Publication number: 20100238606
    Abstract: An electric double layer capacitor that contains at least one electrochemical cell is provided. The cell contains electrodes (e.g., two electrodes) that each contain a porous matrix of electrochemically-active particles (e.g., carbon). An aqueous-based electrolyte is disposed in contact with the porous matrix. In accordance with the present invention, the electrolyte is provided with an anionic polymer that serves as binding agent for the electrochemically active particles and thus reduces electrolyte loss, especially at higher temperatures. Because the polymer is anionic in nature, it is generally hydrophilic and thus can retain its binding properties in the presence of water. The anionic nature of the polymer also allows it to remain stable in the presence of a corrosive polyprotic acid, which is employed in the electrolyte to enhance charge density. Thus, as a result of the present invention, a capacitor may be formed that is capable of exhibiting good electrical performance (e.g.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: AVX Corporation
    Inventors: Dirk H. Dreissig, Jonathan R. Knopsnyder, Jessica M. Smith, Lee Shinaberger, Bharat Rawal
  • Publication number: 20100238608
    Abstract: An electrolytic capacitor that contains an anodically oxidized porous anode, cathode, and an electrolyte that contains an alkali metal salt and ionically conductive polymer is provided. The alkali metal salt forms a complex with the ionically conductive polymer and thereby improves its ionic conductivity, particularly at higher temperatures. The electrolyte also contains an organic solvent that reduces the viscosity of the electrolyte and helps lower the potential barrier to metal ion transport within the electrolyte to improve conductivity. By selectively controlling the relative amount of each of these components, the present inventors have discovered that a highly ionically conductive electrolyte may be formed that is also in the form of a viscous liquid. The liquid nature of the electrolyte enables it to more readily enter the pores of the anode via capillary forces and improve specific capacitance. Further, although a liquid, its viscous nature may inhibit the likelihood of leakage.
    Type: Application
    Filed: March 23, 2009
    Publication date: September 23, 2010
    Applicant: AVX CORPORATION
    Inventors: Dirk H. Dreissig, John Galvagni