Patents by Inventor Dirk Hammerschmidt

Dirk Hammerschmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10845210
    Abstract: A sensor interface operates to communicate a sensed quantity along one or more processing pathways and in different data representations. The signal representations can be swapped along one or more locations of the signal processing branches. These branches are independent from one another and combined at an interface component for transmission along a single path or node for a control unit.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 24, 2020
    Assignee: Infineon Technologies AG
    Inventors: Christian Reidl, Wolfgang Granig, Harald Witschnig, Dirk Hammerschmidt
  • Publication number: 20200341024
    Abstract: A method of sensing a rotation speed of an encoder includes generating measurement values by a plurality of sensor elements in response to sensing a magnetic field, where the plurality of sensor elements are grouped into a first shifted pair, a central pair, and a second shifted pair; generating a first shifted differential measurement signal based on the measurement values generated by the first shifted pair, a central differential measurement signal based on the measurement values generated by the central pair, and a second shifted differential measurement signal based on the measurement values generated by the second shifted pair; and generating an output signal based on detecting the first shifted differential measurement signal, the central differential measurement signal, and the second shifted differential measurement signal crossing at least one threshold.
    Type: Application
    Filed: July 14, 2020
    Publication date: October 29, 2020
    Applicant: Infineon Technologies AG
    Inventor: Dirk HAMMERSCHMIDT
  • Patent number: 10802133
    Abstract: A system may include a magnetic sensor to measure a magnetic field that is influenced by a magnetic property of a target object, and determine first characteristic information, associated with the target object, based on the magnetic field. The system may include a radar sensor to measure a radar signal that is influenced by a radar property of the target object, and determine second characteristic information, associated with the target object, based on the radar signal. The system may include a controller to determine a characteristic of the target object based on the first characteristic information and the second characteristic information.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: October 13, 2020
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Robert Hermann
  • Publication number: 20200319271
    Abstract: A magnetic sensor is configured to measure a magnetic field whose magnitude oscillates between a first extrema and a second extrema. The magnetic sensor includes a plurality of magnetic field sensor elements, each configured to generate a sensor signal in response to the magnetic field impinging thereon. The plurality of sensor elements are grouped into a first group from which a first measurement signal is derived and a second group from which a second measurement signal is derived, and the first measurement signal and the second measurement signal having a phase difference based on different phases. The magnetic sensor further includes a sensor circuit configured to receive the first measurement signal and the second measurement signal, and apply a signal conversion algorithm thereto to generate a converted measurement signal having an increased frequency with respect to the first measurement signal and the second measurement signal.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Applicant: Infineon Technologies AG
    Inventors: Helmut KOECK, Simon HAINZ, Dirk HAMMERSCHMIDT
  • Publication number: 20200321256
    Abstract: A semiconductor device includes a semiconductor chip including a substrate having a first surface and a second surface arranged opposite to the first surface; and a microelectromechanical systems (MEMS) element, including a sensitive area, disposed at the first surface of the substrate. The semiconductor device further includes at least one electrical interconnect structure electrically connected to the first surface of the substrate, and a flexible carrier electrically connected to the at least one electrical interconnect structure, where the flexible carrier wraps around the semiconductor chip and extends over the second surface of the substrate such that a folded cavity is formed around the semiconductor chip.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 8, 2020
    Applicant: Infineon Technologies AG
    Inventor: Dirk HAMMERSCHMIDT
  • Patent number: 10777474
    Abstract: A semiconductor device includes a semiconductor chip including a substrate having a first surface and a second surface arranged opposite to the first surface; and a microelectromechanical systems (MEMS) element, including a sensitive area, disposed at the first surface of the substrate. The semiconductor device further includes at least one electrical interconnect structure electrically connected to the first surface of the substrate, and a flexible carrier electrically connected to the at least one electrical interconnect structure, where the flexible carrier wraps around the semiconductor chip and extends over the second surface of the substrate such that a folded cavity is formed around the semiconductor chip.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: September 15, 2020
    Assignee: Infineon Technologies AG
    Inventor: Dirk Hammerschmidt
  • Publication number: 20200283287
    Abstract: A semiconductor device includes a semiconductor chip including a substrate having a first surface and a second surface arranged opposite to the first surface; and a microelectromechanical systems (MEMS) element, including a sensitive area, disposed at the first surface of the substrate. The semiconductor device further includes at least one electrical interconnect structure electrically connected to the first surface of the substrate, and a flexible carrier electrically connected to the at least one electrical interconnect structure, where the flexible carrier wraps around the semiconductor chip and extends over the second surface of the substrate such that a folded cavity is formed around the semiconductor chip.
    Type: Application
    Filed: March 6, 2019
    Publication date: September 10, 2020
    Applicant: Infineon Technologies AG
    Inventor: Dirk HAMMERSCHMIDT
  • Publication number: 20200284615
    Abstract: A off-axis angle sensor may receive a set of output signals including a first output signal, a second output signal, and a third output signal. The off-axis angle sensor may determine, based on the set of output signals, a set of delta signals including a first delta signal, a second delta signal, and a third delta signal. The off-axis angle sensor may identify a set of functional safety checks, from a plurality of functional safety checks configured on the off-axis angle sensor, for selective performance in association with determining functional safety of the off-axis angle sensor. Each of the plurality of functional safety checks may be performed independently of each of the other functional safety checks. The off-axis angle sensor may perform one or more functional safety checks based at least in part on at least one of: the set of output signals or the set of delta signals.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 10, 2020
    Inventors: Dirk Hammerschmidt, Thomas Hafner, Peter Slama
  • Publication number: 20200264596
    Abstract: A crash sensor device may include multiple sensor components positioned along one or more data paths to a communication interface of the crash sensor device. The crash sensor device may include a test control unit. The test control unit may receive a test command from an electronic control unit during operation of a vehicle. The test control unit may perform a test of one or more sensor components, of the multiple sensor components, during operation of the vehicle based on the test command. The test control unit may output a test result to the electronic control unit based on performing the test.
    Type: Application
    Filed: May 8, 2020
    Publication date: August 20, 2020
    Inventor: Dirk HAMMERSCHMIDT
  • Patent number: 10739368
    Abstract: Magnetic sensor modules, systems and methods are provided, configured to detect a rotation speed of an object. A magnetic sensor module includes a plurality of sensor elements configured to generate measurement values in response to sensing a magnetic field, the plurality of sensor elements being grouped into three pairs; and a sensor circuit configured to generate a first shifted differential measurement signal based on the measurement values received from a first shifted pair of sensor elements, a central differential measurement signal based on the measurement values received from a central pair of sensor elements, and a second shifted differential measurement signal based on the measurement values received from a second shifted pair of sensor elements, and generate an output signal based on detecting the first shifted differential measurement signal, the central differential measurement signal, and the second shifted differential measurement signal crossing at least one threshold.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: August 11, 2020
    Assignee: Infineon Technologies AG
    Inventor: Dirk Hammerschmidt
  • Publication number: 20200252078
    Abstract: A receiver includes a receiver circuit to receive a first transition in a first direction, a second transition in a second, different direction after the first transition and a third transition in the first transition after the second transition of a signal. A first time period between the first and third transitions is indicative of a datum to be received. The receiver circuit is also configured to determine a second time period between the first transition and a second transition and to determine an additional datum to be received based at least on the determined second time period between the first and second transitions. Using the determined second time period allows for more information to be received in a reliable manner.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 6, 2020
    Inventor: Dirk Hammerschmidt
  • Patent number: 10732007
    Abstract: A magnetic speed sensor may comprise a digital component configured to estimate a zero crossing event based on a plurality of sensor signal samples. The digital component may output, to a control unit, a speed signal that is based on the estimated zero crossing event.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: August 4, 2020
    Assignee: Infineon Technologies AG
    Inventors: Dirk Hammerschmidt, Muhammad Adnan
  • Patent number: 10718827
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor configured to measure a magnetic field whose magnitude oscillates between a first extrema and a second extrema. The magnetic sensor includes a plurality of magnetic field sensor elements, each configured to generate a sensor signal in response to the magnetic field impinging thereon. The plurality of sensor elements are grouped into a first group from which a first measurement signal is derived and a second group from which a second measurement signal is derived, and the first measurement signal and the second measurement signal having phase difference of 90°. The magnetic sensor further includes a sensor circuit configured to receive the first measurement signal and the second measurement signal, and apply a signal conversion algorithm thereto to generate a converted measurement signal having an increased frequency with respect to the first measurement signal and the second measurement signal.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: July 21, 2020
    Assignee: Infineon Technologies AG
    Inventors: Helmut Koeck, Simon Hainz, Dirk Hammerschmidt
  • Publication number: 20200217690
    Abstract: An angle sensor may comprise a sensing element including a first half bridge, where magnetic reference directions of resistors of the first half bridge are along a first reference axis. The sensing element may include a second half bridge, where magnetic reference directions of resistors of the second half bridge are along a second reference axis. The sensing element may include a third half bridge, where magnetic reference directions of resistors of the third half bridge are along a third reference axis. At least two of the first reference axis, the second reference axis, or the third reference axis may be non-orthogonal to each other.
    Type: Application
    Filed: March 12, 2020
    Publication date: July 9, 2020
    Inventor: Dirk Hammerschmidt
  • Publication number: 20200220656
    Abstract: A sensor system is configured to communicate at least partially protected sensor data over a communication interface. The sensor system includes a sensor element and a communication interface communicatively coupled to the sensor element. The sensor element is configured to provide sensor data in the digital domain. The communication interface is configured to generate a data package for transmission over the communication interface from the sensor data. The data package includes a data grouping comprising one or more nibbles related to the sensor data. The data package further includes a nibble indicia based on at least a portion of selected nibbles within the data grouping.
    Type: Application
    Filed: March 16, 2020
    Publication date: July 9, 2020
    Inventors: Dirk Hammerschmidt, Wolfgang Scherr
  • Patent number: 10705132
    Abstract: A method including feeding a test signal into a first end of a conductor track of a semiconductor chip, wherein the conductor track crosses an indentation of a substrate of the semiconductor chip; and detecting the test signal at a second ends of the conductor track, which wherein the detected test signal is indicative of fracture of the substrate of the semiconductor chip at the indentation.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: July 7, 2020
    Assignee: Infineon Technologies AG
    Inventors: Thomas Zettler, Dirk Hammerschmidt, Friedrich Rasbornig, Wolfgang Scheibenzuber, Hans-Joerg Wagner
  • Patent number: 10704988
    Abstract: A measurement system includes a signal bus, an electronic control unit, and an emulated sensor. The electronic control unit is coupled to the signal bus. The sensor with emulated line adaptation is also coupled to the signal bus. The emulated sensor is configured to adapt current consumption according to a selected impedance and a selected frequency range.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: July 7, 2020
    Assignee: Infineon Technologies AG
    Inventor: Dirk Hammerschmidt
  • Patent number: 10699041
    Abstract: An age monitoring arrangement includes a sensor, a calculation component, and a timer. The sensor is configured to generate one or more measurements of an environmental property. The calculation component is configured to generate a virtual age and identify an occurrence of an event based on the one or more measurements and a clock using an aging module. The timer is configured to generate the clock.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 30, 2020
    Assignee: Infineon Technologies AG
    Inventor: Dirk Hammerschmidt
  • Publication number: 20200201702
    Abstract: Fault detection devices, systems, and methods are provided which implement identical processors. A first processor is configured to receive a first measurement, execute a first firmware based on the first measurement, and output a first result of the executed first firmware. A second processor is configured to receive a second measurement, execute a second firmware based on the second measurement, and output a second result of the executed second firmware. The first firmware and the second firmware provide a same nominal function in a diverse manner for calculating the first result and the second result, respectively, such that the first result and the second result are expected to be within a predetermined margin.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 25, 2020
    Applicant: Infineon Technologies AG
    Inventors: Thomas ZETTLER, Dirk HAMMERSCHMIDT, Friedrich RASBORNIG, Michael Strasser, Akos Hegedus, Wolfgang GRANIG
  • Patent number: 10671062
    Abstract: A crash sensor device may include multiple sensor components positioned along one or more data paths to a communication interface of the crash sensor device. The crash sensor device may include a test control unit. The test control unit may receive a test command from an electronic control unit during operation of a vehicle. The test control unit may perform a test of one or more sensor components, of the multiple sensor components, during operation of the vehicle based on the test command. The test control unit may output a test result to the electronic control unit based on performing the test.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: June 2, 2020
    Assignee: Infineon Technologies AG
    Inventor: Dirk Hammerschmidt