Patents by Inventor Dirk John VANDENBERG

Dirk John VANDENBERG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230205202
    Abstract: Systems and methods are provided for remotely detecting a status associated with an autonomous vehicle and generating control actions in response to such detections. In one example, a computing system can access a third-party communication associated with an autonomous vehicle. The computing system can determine, based at least in part on the third-party communication, a predetermined identifier associated with the autonomous vehicle. The computing system can determine, based at least in part on the third-party communication, a status associated with the autonomous vehicle, and transmit one or more control messages to the autonomous vehicle based at least in part on the predetermined identifier and the status associated with the autonomous vehicle.
    Type: Application
    Filed: February 28, 2023
    Publication date: June 29, 2023
    Inventors: Scott C. Poeppel, Noah Zych, Matthew Shaw Wood, Dirk John Vandenberg, III
  • Publication number: 20230096643
    Abstract: Aspects of the present disclosure involve systems, methods, and devices for fault detection in a Lidar system. A fault detection system obtains incoming Lidar data output by a Lidar system during operation of an AV system. The incoming Lidar data includes one or more data points corresponding to a fault detection target on an exterior of a vehicle of the AV system. The fault detection system accesses historical Lidar data that is based on data previously output by the Lidar system. The historical Lidar data corresponds to the fault detection target. The fault detection system performs a comparison of the incoming Lidar data with the historical Lidar data to identify any differences between the two sets of data. The fault detection system detects a fault condition occurring at the Lidar system based on the comparison.
    Type: Application
    Filed: December 6, 2022
    Publication date: March 30, 2023
    Inventors: Dirk John Vandenberg, III, James Allen Haslim, Thomas Lawrence Smith, Adam David Kenvarg
  • Patent number: 11614735
    Abstract: Systems and methods are provided for remotely detecting a status associated with an autonomous vehicle and generating control actions in response to such detections. In one example, a computing system can access a third-party communication associated with an autonomous vehicle. The computing system can determine, based at least in part on the third-party communication, a predetermined identifier associated with the autonomous vehicle. The computing system can determine, based at least in part on the third-party communication, a status associated with the autonomous vehicle, and transmit one or more control messages to the autonomous vehicle based at least in part on the predetermined identifier and the status associated with the autonomous vehicle.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: March 28, 2023
    Assignee: UATC, LLC
    Inventors: Scott C. Poeppel, Noah Zych, Matthew Shaw Wood, Dirk John Vandenberg, III
  • Patent number: 11548403
    Abstract: Systems and methods for automatically servicing autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data associated with one or more reference mechanisms located on an autonomous vehicle. The method includes identifying information associated with the autonomous vehicle based at least in part on the data associated with the one or more reference mechanisms located on the autonomous vehicle. The information associated with the autonomous vehicle includes an orientation of the autonomous vehicle. The method includes determining a vehicle maintenance plan for the autonomous vehicle based at least in part on the information associated with the autonomous vehicle. The method includes providing one or more control signals to implement the vehicle maintenance plan for the autonomous vehicle based at least in part on the orientation of the autonomous vehicle.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: January 10, 2023
    Assignee: UATC, LLC
    Inventors: Matthew Shaw Wood, Dirk John VandenBerg, III
  • Patent number: 11543535
    Abstract: Aspects of the present disclosure involve systems, methods, and devices for fault detection in a Lidar system. A fault detection system obtains incoming Lidar data output by a Lidar system during operation of an AV system. The incoming Lidar data includes one or more data points corresponding to a fault detection target on an exterior of a vehicle of the AV system. The fault detection system accesses historical Lidar data that is based on data previously output by the Lidar system. The historical Lidar data corresponds to the fault detection target. The fault detection system performs a comparison of the incoming Lidar data with the historical Lidar data to identify any differences between the two sets of data. The fault detection system detects a fault condition occurring at the Lidar system based on the comparison.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: January 3, 2023
    Assignee: UATC, LLC
    Inventors: Dirk John Vandenberg, III, James Allen Haslim, Thomas Lawrence Smith, Adam David Kenvarg
  • Publication number: 20210284044
    Abstract: Systems and methods for automatically servicing autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data associated with one or more reference mechanisms located on an autonomous vehicle. The method includes identifying information associated with the autonomous vehicle based at least in part on the data associated with the one or more reference mechanisms located on the autonomous vehicle. The information associated with the autonomous vehicle includes an orientation of the autonomous vehicle. The method includes determining a vehicle maintenance plan for the autonomous vehicle based at least in part on the information associated with the autonomous vehicle. The method includes providing one or more control signals to implement the vehicle maintenance plan for the autonomous vehicle based at least in part on the orientation of the autonomous vehicle.
    Type: Application
    Filed: May 27, 2021
    Publication date: September 16, 2021
    Inventors: Matthew Shaw Wood, Dirk John VandenBerg, III
  • Patent number: 11021075
    Abstract: Systems and methods for automatically servicing autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data associated with one or more reference mechanisms located on an autonomous vehicle. The method includes identifying information associated with the autonomous vehicle based at least in part on the data associated with the one or more reference mechanisms located on the autonomous vehicle. The information associated with the autonomous vehicle includes an orientation of the autonomous vehicle. The method includes determining a vehicle maintenance plan for the autonomous vehicle based at least in part on the information associated with the autonomous vehicle. The method includes providing one or more control signals to implement the vehicle maintenance plan for the autonomous vehicle based at least in part on the orientation of the autonomous vehicle.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: June 1, 2021
    Assignee: UATC, LLC
    Inventors: Matthew Shaw Wood, Dirk John VandenBerg, III
  • Publication number: 20210003711
    Abstract: Aspects of the present disclosure involve systems, methods, and devices for fault detection in a Lidar system. A fault detection system obtains incoming Lidar data output by a Lidar system during operation of an AV system. The incoming Lidar data includes one or more data points corresponding to a fault detection target on an exterior of a vehicle of the AV system. The fault detection system accesses historical Lidar data that is based on data previously output by the Lidar system. The historical Lidar data corresponds to the fault detection target. The fault detection system performs a comparison of the incoming Lidar data with the historical Lidar data to identify any differences between the two sets of data. The fault detection system detects a fault condition occurring at the Lidar system based on the comparison.
    Type: Application
    Filed: January 23, 2020
    Publication date: January 7, 2021
    Inventors: Dirk John Vandenberg, III, James Allen Haslim, Thomas Lawrence Smith, Adam David Kenvarg
  • Patent number: 10875511
    Abstract: Systems and methods for brake redundancy for an autonomous vehicle are provided. An autonomous vehicle braking system can include a primary brake control module comprising one or more processors. The primary brake control module can be configured to brake an autonomous vehicle in response to receiving a braking command from a vehicle autonomy system of the autonomous vehicle. The autonomous vehicle braking system can further include a secondary brake control module comprising one or more processors. The secondary brake control module can be configured to determine a failure of the primary brake control module to brake the autonomous vehicle in response to receiving the braking command. In response to determining the failure of the primary brake control module to brake the autonomous vehicle, the secondary brake control module can be configured to implement a braking action for the autonomous vehicle.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: December 29, 2020
    Assignee: UATC, LLC
    Inventors: Dirk John VandenBerg, III, Nicholas G. Letwin
  • Patent number: 10611384
    Abstract: Systems and methods for managing autonomous vehicle operator vigilance are provided. A method can include determining, by a computing system comprising one or more processors, a first vigilance prompt. The first vigilance prompt can be included in a plurality of vigilance prompts. Each of the plurality of vigilance prompts can be different from each other vigilance prompt. Each vigilance prompt can be a prompt for the vehicle operator to perform a particular interaction with the autonomous vehicle. The method can further include providing, by the computing system, the first vigilance prompt to a vehicle operator of an autonomous vehicle. The method can further include receiving, by the computing system, a first response from the vehicle operator in response to the first vigilance prompt. The method can further include determining, by the computing system, a vehicle operator vigilance level based at least in part on the first response.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: April 7, 2020
    Assignee: UATC, LLC
    Inventors: Dirk John VandenBerg, III, Benjamin Stanley Swears
  • Patent number: 10393725
    Abstract: A system and method that images biological samples and uses chromophores to analyze the imaged samples. The chromophore analysis can be done by itself or in conjunction with fluorophore analysis in High Content Imaging systems. To perform chromophore analysis the biological samples can be labeled with different chromophores and imaged using transmitted light that is at least partially absorbed by the chromophores. To also perform fluorophore analysis the samples can also be labeled with fluorophores that are excited by excitation light. The chromophore analysis and fluorophore analysis can be performed separately or concurrently using a High Content Imaging system. The system provides the expanded capability by illuminating the chromophore-labeled samples with transmitted light of different wavelengths and automatically detecting the images which represent the differential absorption of the colored lights by the sample.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 27, 2019
    Assignee: CELLOMICS, INC.
    Inventors: Richik Niloy Ghosh, Dirk John VandenBerg, III, Keith Rao Heffley, Monica Jo Tomaszewski, Jeffrey Robert Haskins
  • Patent number: 10353130
    Abstract: An apparatus and method of delivering a precisely sized, homogeneous field of light within an optical system. The apparatus operates equally well over UV, visible, and NIR wavelengths, over a wide range of input beam divergence and regardless of heterogeneity. A tapered or contoured homogenizing rod that creates an evenly distributed illumination at a target area of specific size.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: July 16, 2019
    Assignee: Cellomics, Inc.
    Inventors: Dirk John Vandenberg, Monica Jo Tomaszewski, Keith Rao Heffley, Steven Roland Auger
  • Publication number: 20190168724
    Abstract: Systems and methods for brake redundancy for an autonomous vehicle are provided. An autonomous vehicle braking system can include a primary brake control module comprising one or more processors. The primary brake control module can be configured to brake an autonomous vehicle in response to receiving a braking command from a vehicle autonomy system of the autonomous vehicle. The autonomous vehicle braking system can further include a secondary brake control module comprising one or more processors. The secondary brake control module can be configured to determine a failure of the primary brake control module to brake the autonomous vehicle in response to receiving the braking command. In response to determining the failure of the primary brake control module to brake the autonomous vehicle, the secondary brake control module can be configured to implement a braking action for the autonomous vehicle.
    Type: Application
    Filed: January 19, 2018
    Publication date: June 6, 2019
    Inventors: Dirk John VandenBerg, III, Nicholas G. Letwin
  • Publication number: 20190154652
    Abstract: A system and method that images biological samples and uses chromophores to analyze the imaged samples. The chromophore analysis can be done by itself or in conjunction with fluorophore analysis in High Content Imaging systems. To perform chromophore analysis the biological samples can be labeled with different chromophores and imaged using transmitted light that is at least partially absorbed by the chromophores. To also perform fluorophore analysis the samples can also be labeled with fluorophores that are excited by excitation light. The chromophore analysis and fluorophore analysis can be performed separately or concurrently using a High Content Imaging system. The system provides the expanded capability by illuminating the chromophore-labeled samples with transmitted light of different wavelengths and automatically detecting the images which represent the differential absorption of the colored lights by the sample.
    Type: Application
    Filed: January 28, 2019
    Publication date: May 23, 2019
    Inventors: Richik Niloy Ghosh, Dirk John VandenBerg, III, Keith Rao Heffley, Monica Jo Tomaszewski, Jeffrey Robert Haskins
  • Patent number: 10274715
    Abstract: Accurate, reliable, and robust laser-based autofocus solutions are presented for through-the-lens microscope applications using slides or micro-titer plates. The laser-based autofocus solutions solve many of the problems that have arisen due to multiple reflective surfaces at varying distances relative to a sample of interest. The laser-based autofocus solutions provide a unique solution to resolve the ambiguity caused by these multiple reflective surfaces by using an image-based approach.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: April 30, 2019
    Assignee: CELLOMICS, INC.
    Inventors: Ronald Albert Kuhn, Kim Anthony Ippolito, Dirk John Vandenberg, III
  • Patent number: 10248121
    Abstract: Systems and methods for managing autonomous vehicles to address traffic anomalies are provided. In one example embodiment, a method includes detecting, by one or more computing devices, an existence of a traffic anomaly within a geographic area. The method includes determining, by the one or more computing devices, at least one autonomous vehicle to address the traffic anomaly within the geographic area. The method includes providing, by the one or more computing devices, a communication to the at least one autonomous vehicle instructing the autonomous vehicle to enter into a traffic reduction operation mode to address the traffic anomaly. The traffic reduction operation mode is based at least in part on a profile associated with the traffic reduction operation mode. The profile associated with the traffic reduction operation mode is stored onboard the autonomous vehicle. The autonomous vehicle is configured to operate in the traffic reduction operation mode.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 2, 2019
    Assignee: Uber Technologies, Inc.
    Inventor: Dirk John VandenBerg, III
  • Patent number: 10234445
    Abstract: A system and method that images biological samples and uses chromophores to analyze the imaged samples. The chromophore analysis can be done by itself or in conjunction with fluorophore analysis in High Content Imaging systems. To perform chromophore analysis the biological samples can be labeled with different chromophores and imaged using transmitted light that is at least partially absorbed by the chromophores. To also perform fluorophore analysis the samples can also be labeled with fluorophores that are excited by excitation light. The chromophore analysis and fluorophore analysis can be performed separately or concurrently using a High Content Imaging system. The system provides the expanded capability by illuminating the chromophore-labeled samples with transmitted light of different wavelengths and automatically detecting the images which represent the differential absorption of the colored lights by the sample.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: March 19, 2019
    Assignee: CELLOMICS, INC.
    Inventors: Richik Niloy Ghosh, Dirk John VandenBerg, III, Keith Rao Heffley, Monica Jo Tomaszewski, Jeffrey Robert Haskins
  • Publication number: 20190033880
    Abstract: Systems and methods for automatically servicing autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data associated with one or more reference mechanisms located on an autonomous vehicle. The method includes identifying information associated with the autonomous vehicle based at least in part on the data associated with the one or more reference mechanisms located on the autonomous vehicle. The information associated with the autonomous vehicle includes an orientation of the autonomous vehicle. The method includes determining a vehicle maintenance plan for the autonomous vehicle based at least in part on the information associated with the autonomous vehicle. The method includes providing one or more control signals to implement the vehicle maintenance plan for the autonomous vehicle based at least in part on the orientation of the autonomous vehicle.
    Type: Application
    Filed: September 19, 2018
    Publication date: January 31, 2019
    Inventors: Matthew Shaw Wood, Dirk John VandenBerg, III
  • Patent number: 10095239
    Abstract: Systems and methods for automatically servicing autonomous vehicles are provided. In one example embodiment, a computer implemented method includes obtaining data associated with one or more reference mechanisms located on an autonomous vehicle. The method includes identifying information associated with the autonomous vehicle based at least in part on the data associated with the one or more reference mechanisms located on the autonomous vehicle. The information associated with the autonomous vehicle includes an orientation of the autonomous vehicle. The method includes determining a vehicle maintenance plan for the autonomous vehicle based at least in part on the information associated with the autonomous vehicle. The method includes providing one or more control signals to implement the vehicle maintenance plan for the autonomous vehicle based at least in part on the orientation of the autonomous vehicle.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: October 9, 2018
    Assignee: Uber Technologies, Inc.
    Inventors: Matthew Shaw Wood, Dirk John VandenBerg, III
  • Publication number: 20180284770
    Abstract: Systems and methods for managing autonomous vehicles to address traffic anomalies are provided. In one example embodiment, a method includes detecting, by one or more computing devices, an existence of a traffic anomaly within a geographic area. The method includes determining, by the one or more computing devices, at least one autonomous vehicle to address the traffic anomaly within the geographic area. The method includes providing, by the one or more computing devices, a communication to the at least one autonomous vehicle instructing the autonomous vehicle to enter into a traffic reduction operation mode to address the traffic anomaly. The traffic reduction operation mode is based at least in part on a profile associated with the traffic reduction operation mode. The profile associated with the traffic reduction operation mode is stored onboard the autonomous vehicle. The autonomous vehicle is configured to operate in the traffic reduction operation mode.
    Type: Application
    Filed: March 31, 2017
    Publication date: October 4, 2018
    Inventor: Dirk John VandenBerg, III