Patents by Inventor Dirk Kaehler

Dirk Kaehler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105883
    Abstract: A method includes the steps of: providing a mold substrate and a cover substrate that are bonded to each other, wherein a surface region of the mold substrate and/or of the cover substrate is structured so as to form an enclosed cavity between the cover substrate and the mold substrate; tempering the cover substrate and the mold substrate so as to decrease the viscosity of the glass material of the cover substrate, and providing an overpressure in the enclosed cavity compared to the surrounding atmosphere so as to cause, on the basis of the decreased viscosity of the glass material of the cover substrate and the overpressure in the enclosed cavity compared to the surrounding atmosphere, bulging of the glass material of the cover substrate starting from the enclosed cavity up to a stop area, spaced apart from the cover substrate, of a stop element so as to acquire a molded cover substrate with a cap element; and removing the stop element and the mold substrate from the molded cover substrate.
    Type: Application
    Filed: August 18, 2023
    Publication date: March 28, 2024
    Inventors: Wolfgang REINERT, Vanessa STENCHLY, Hans-Joachim QUENZER, Dirk KAEHLER
  • Patent number: 7739900
    Abstract: The present invention is directed to a method for testing the leakage rate of an encapsulated device comprising the step: bombing the device with a neon and/or argon atmosphere using a bombing pressure of at least more than environmental pressure and measuring the quality factor before and after bombing. Preferably, the bombing time is about 10 to 100 hours, and the bombing pressure is 1.5 to 100 bar, more preferably 1.5 to 5 bar and most preferably about 4 bar. With this test, the leakage rate of fine leaks of the device may be determined.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: June 22, 2010
    Assignee: Fraunhofer-Gesellschaft zur Foederung der Angewandten Forschung E.V.
    Inventors: Wolfgang Reinert, Dirk Kaehler, Peter Merz
  • Publication number: 20090133628
    Abstract: A continuous vacuum system for processing substrates has an inlet air lock, an outlet air lock, at least one process chamber, and a device for conveying the substrates through the continuous system. To create a continuous system having a compact design and high throughput for plasma-enhanced treatment of substrates at a reduced pressure, which ensures a simple, rapid and secure handling of the substrates with a high capacity of the substrate carrier, the conveying device has at least one plasma boat in which the substrates are arranged on a base plate in a three-dimensional stack in at least one plane at a predefined distance from one another with intermediate carriers in between. At least the intermediate carriers are made of graphite or another suitable electrically conductive material and can be acted upon electrically with an alternating voltage via an electric connection.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 28, 2009
    Applicant: Centrotherm Photovoltaics AG
    Inventors: Roland DAHL, Josef Haase, Moritz Heintze, Thomas Pernau, Hans Reichart, Harald Wanka, Jan-Dirk Kaehler, Reinhard Lenz, Dieter Zernickel, Robert Michael Hartung
  • Publication number: 20080141759
    Abstract: The present invention is directed to a method for testing the leakage rate of an encapsulated device comprising the step: bombing the device with a Neon and/or Argon atmosphere using a bombing pressure of at least more than environmental pressure and measuring the quality factor before and after bombing. Preferably, the bombing time is about 10 to 100 hours, and the bombing pressure is 1.5 to 100 bar, more preferably 1.5 to 5 bar and most preferably about 4 bar. With this test, the leakage rate of fine leaks of the device may be determined. This test is helpful in determining statistical surface contaminations or defects caused by wafer processing that affect the seal integrity just enough to cause shorter lifetimes. Further, dicing, die assembly and transfer molding may also introduce physical defects which may be detected with the present method. Finally, the inventive test method may be useful for process optimization: Hermeticity tests are a great help to optimize sealing processes.
    Type: Application
    Filed: November 10, 2005
    Publication date: June 19, 2008
    Inventors: Wolfgang Reinert, Dirk Kaehler, Peter Merz