Patents by Inventor Dirk Killat

Dirk Killat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9093901
    Abstract: This invention provides a switching converter having a number N of outputs providing N output signals, said switching converter being operable in at least a boost mode. The switching converter has at least one inductor, a number of switches, and a controlling device for controlling a charging time of the at least one inductor at least by the switches such that a discharging time of the at least one inductor is constant.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 28, 2015
    Assignee: Dialog Semiconductor GmbH
    Inventors: Weiwei Xu, Zhiliang Hong, Dirk Killat
  • Patent number: 8975879
    Abstract: This invention provides a switching converter having a plurality N of outputs providing N output signals and at least one inductor, comprising a first controlling device for controlling the total energy flowing over the inductor to the N outputs dependent on a first control signal, at least a second controlling device for distributing the total energy between the N outputs by means of at least a second control signal, wherein the first controlling device is coupled to all N outputs for receiving a number M of the respective feedback output signals of the N outputs, M?N, wherein the first controlling device comprises first means for weighting the M feedback output signals and second means for providing the first control signal dependent on the weighted M feedback output signals.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: March 10, 2015
    Assignees: Dialog Semiconductor GmbH, State-Key Laboratory of ASIC & System
    Inventors: Weiwei Xu, Zhiliang Hong, Dirk Killat
  • Patent number: 8531238
    Abstract: Disclosed are systems and methods to achieve a low noise, fully differential amplifier with controlled common mode voltages at each stage output but without the requirement of a common mode feedback loop. Common mode voltages are adjusted by adjusting the currents flowing through the load impedances (bias currents) wherein the currents are derived from one or more voltage-to-current converters based on an impedance that matches to the load impedances of the stages of the amplifier. The amplifier invented is primarily used for amplification of low frequency signals. The amplifier has one or more gain stages applying only one conduction type of transistors of an IC technology that has the lowest transition frequency between 1/f noise and white noise to achieve a low chopping or autozeroing frequency.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: September 10, 2013
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Publication number: 20130169361
    Abstract: Disclosed are systems and methods to achieve a low noise, fully differential amplifier with controlled common mode voltages at each stage output but without the requirement of a common mode feedback loop. Common mode voltages are adjusted by adjusting the currents flowing through the load impedances (bias currents) wherein the currents are derived from one or more voltage-to-current converters based on an impedance that matches to the load impedances of the stages of the amplifier. The amplifier invented is primarily used for amplification of low frequency signals. The amplifier has one or more gain stages applying only one conduction type of transistors of an IC technology that has the lowest transition frequency between 1/f noise and white noise to achieve a low chopping or autozeroing frequency.
    Type: Application
    Filed: January 11, 2012
    Publication date: July 4, 2013
    Applicant: DIALOG SEMICONDUCTOR GMBH
    Inventor: Dirk Killat
  • Patent number: 8358231
    Abstract: A tracking analog-to-digital converter “ADC” with a self-controlled variable clock comprises: a digital register; a digital-to-analog converter “DAC” coupled to said digital register providing an analog feedback signal; a comparator coupled to an analog input signal and said analog feedback signal and providing a comparison signal based on a comparison between said analog input signal and said analog feedback signal, said comparison signal being coupled to the digital register; a means for determining comparator readiness to determine if said comparator is ready, indicating that said comparison signal can be reliably read, said means for determining comparator readiness further comprising a determination of a comparison ready indicator; a means for clocking to generate a clock signal to drive said digital register in response to said means for determining comparator readiness determining that said comparator is ready; and said digital register being configured to count in response to said clock signal based o
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: January 22, 2013
    Assignee: Dialog Semiconductor GmbH
    Inventors: Dirk Killat, Huang Yan
  • Publication number: 20120212356
    Abstract: A tracking analog-to-digital converter “ADC” with a self-controlled variable clock comprises: a digital register; a digital-to-analog converter “DAC” coupled to said digital register providing an analog feedback signal; a comparator coupled to an analog input signal and said analog feedback signal and providing a comparison signal based on a comparison between said analog input signal and said analog feedback signal, said comparison signal being coupled to the digital register; a means for determining comparator readiness to determine if said comparator is ready, indicating that said comparison signal can be reliably read, said means for determining comparator readiness further comprising a determination of a comparison ready indicator; a means for clocking to generate a clock signal to drive said digital register in response to said means for determining comparator readiness determining that said comparator is ready; and said digital register being configured to count in response to said clock signal based o
    Type: Application
    Filed: May 11, 2011
    Publication date: August 23, 2012
    Inventors: Dirk Killat, Huang Yan
  • Publication number: 20120062030
    Abstract: This invention provides a switching converter having a number N of outputs providing N output signals, said switching converter being operable in at least a boost mode.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 15, 2012
    Inventors: Weiwei Xu, Zhiliang Hong, Dirk Killat
  • Publication number: 20110068757
    Abstract: This invention provides a switching converter having a plurality N of outputs providing N output signals and at least one inductor, comprising a first controlling device for controlling the total energy flowing over the inductor to the N outputs dependent on a first control signal, at least a second controlling device for distributing the total energy between the N outputs by means of at least a second control signal, wherein the first controlling device is coupled to all N outputs for receiving a number M of the respective feedback output signals of the N outputs, M?N, wherein the first controlling device comprises first means for weighting the M feedback output signals and second means for providing the first control signal dependent on the weighted M feedback output signals.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 24, 2011
    Inventors: Weiwei Xu, Zhiliang Hong, Dirk Killat
  • Patent number: 7514999
    Abstract: Circuits and methods to achieve a voltage-to-current converter having low noise and a high linearity are disclosed. In a preferred embodiment the converter has been used as a Gm integrator. The core of the invention is an operational transconductance amplifier (OTA) having additional DC current sources allowing a common mode voltage shift. The feedback currents and output currents are decoupled by means of current mirrors. The feedback currents are higher than the output currents thus allowing lower integration resistor size. A common mode decoupling of input and output has been achieved by current mirrors.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: April 7, 2009
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Publication number: 20070229161
    Abstract: Circuits and methods to achieve a voltage-to-current converter having low noise and a high linearity are disclosed. In a preferred embodiment the converter has been used as a Gm integrator. The core of the invention is an operational transconductance amplifier (OTA) having additional DC current sources allowing a common mode voltage shift. The feedback currents and output currents are decoupled by means of current mirrors. The feedback currents are higher than the output currents thus allowing lower integration resistor size. A common mode decoupling of input and output has been achieved by current mirrors.
    Type: Application
    Filed: April 13, 2006
    Publication date: October 4, 2007
    Inventor: Dirk Killat
  • Patent number: 7250886
    Abstract: Circuits and methods to achieve a low-noise and low offset continuous sigma-delta modulator used e.g. for battery management are disclosed. Continuous integration of input is enabled by special switching principle of three parallel integrators. Precharging of integrator output in so called pre-run mode minimizes integrator leakage and non-ideal effects by connecting a Gm in pre-run mode either to input voltage or to a reference voltage depending this Gm is being used in a following clock period. Parasitic effects due to switching at first integration capacitor are minimized by using buffer amplifiers tracking the voltage on integration capacitors.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: July 31, 2007
    Assignee: Dialog Semiconductor GmbH
    Inventors: Dirk Killat, Andreas Adler
  • Patent number: 7109794
    Abstract: A new method and a circuit to improve the low voltage performance of a differential gain stage is achieved. The method comprises a monitoring stage and a differential stage. The monitoring stage comprises a differential transistor pair having first and second differential inputs, an upper current input, and a lower current output. In addition, a current source is connected to the upper current input, and a current load is connected to the lower current output. The differential stage comprises a differential transistor pair having first and second differential inputs, an upper current input, and first and second lower current outputs. In addition, a current source is connected to the upper current input, and first and second current loads are connected to the first and second lower current inputs. A current is forced through the monitoring stage current source. The current through the monitoring stage current source is mirrored in the differential stage current source.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 19, 2006
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Publication number: 20060033571
    Abstract: A new method and a circuit to improve the low voltage performance of a differential gain stage is achieved. The method comprises a monitoring stage and a differential stage. The monitoring stage comprises a differential transistor pair having first and second differential inputs, an upper current input, and a lower current output. In addition, a current source is connected to the upper current input, and a current load is connected to the lower current output. The differential stage comprises a differential transistor pair having first and second differential inputs, an upper current input, and first and second lower current outputs. In addition, a current source is connected to the upper current input, and first and second current loads are connected to the first and second lower current inputs. A current is forced through the monitoring stage current source. The current through the monitoring stage current source is mirrored in the differential stage current source.
    Type: Application
    Filed: August 30, 2004
    Publication date: February 16, 2006
    Inventor: Dirk Killat
  • Patent number: 6788114
    Abstract: A circuit and method are given, to realize a high voltage comparator, which generates an output signal for follow-up processing in the low-voltage domain. The high-voltage comparison task is essentially replaced by a current comparison, implemented as a combination of a voltage to current transforming stage with a CMOS current comparator circuit, where only very few parts are working in the high voltage domain. Using the intrinsic advantages of that solution the circuit of the invention is manufactured with standard CMOS technology and only four discrete or integrated extended drain MOS components at low cost. This solution reduces the complexity of the circuit and in consequence also power consumption and manufacturing cost.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: September 7, 2004
    Assignee: Dialog Semiconductor GmbH
    Inventors: Rainer Krenzke, Dirk Killat
  • Patent number: 6704221
    Abstract: A new floating gate programmable device cell is achieved. The device comprises, first, a negative injection transistor having drain, source, bulk, and gate. The source and bulk are coupled to ground. The drain forms an output of the cell. A positive injection transistor has drain, source, bulk, and gate. The drain, source, and bulk are coupled to a programming voltage. The gate is coupled to the negative injection transistor gate to form a floating gate node. Finally, a capacitor has a first terminal coupled to the floating gate node and a second terminal coupled to a control voltage. The states of the programming voltage and the control voltage determine negative charge injection onto the floating gate node and positive charge injection onto the floating gate node. A voltage on the floating gate node comprises a nonvolatile memory state that is detectable by the impedance of the output.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: March 9, 2004
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Patent number: 6573666
    Abstract: A method to control the illumination intensity of a gas discharge lamp is achieved. The method comprises, first, converting an analog lamp illumination signal into a digital lamp illumination signal. The analog lamp illumination signal is a function of the illumination intensity of a gas discharge lamp. Second, digital target signal is subtracted from the digital lamp illumination signal to create a digital error signal. Third, a digital frequency set point is adjusted from a current value to a new value based on the digital error signal. The digital frequency set point is a high resolution digital value. Fourth, the current value and the new value are averaged by a digital delta sigma modulator to create a smoothed frequency set point. The smoothed frequency set point is a medium resolution value. Finally, an oscillating voltage signal is generated with a drive frequency based on the smoothed frequency set point. The drive frequency determines the illumination intensity of the gas discharge lamp.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: June 3, 2003
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Patent number: 6573752
    Abstract: A new high voltage, high side driver circuit has been achieved. The circuit comprises, first, a top PFET having gate, drain, source, and bulk. The gate is coupled to a switching signal. The source is coupled to a high voltage. Second, a top resistor has first and second terminals. The first terminal is coupled to the high voltage. Third, a middle PFET cell comprises a middle PFET having gate, drain, source, and bulk. The source is coupled to the top PFET drain. The gate is coupled to the top resistor second terminal. A middle resistor has first and second terminals. The first terminal is coupled to the middle PFET gate. Finally, a middle means of claimping the middle PFET gate and a clamping voltage completes the middle PFET cell. Fourth, a bottom PFET cell comprises, first, a bottom PFET having gate, drain, source, and bulk. The gate is coupled to the middle resistor second terminal, the source is coupled to the middle PFET drain, and the drain forms a high side driver output.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: June 3, 2003
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Publication number: 20030081455
    Abstract: A new floating gate programmable device cell is achieved. The device comprises, first, a negative injection transistor having drain, source, bulk, and gate. The source and bulk are coupled to ground. The drain forms an output of the cell. A positive injection transistor has drain, source, bulk, and gate. The drain, source, and bulk are coupled to a programming voltage. The gate is coupled to the negative injection transistor gate to form a floating gate node. Finally, a capacitor has a first terminal coupled to the floating gate node and a second terminal coupled to a control voltage. The states of the programming voltage and the control voltage determine negative charge injection onto the floating gate node and positive charge injection onto the floating gate node. A voltage on the floating gate node comprises a nonvolatile memory state that is detectable by the impedance of the output.
    Type: Application
    Filed: December 5, 2001
    Publication date: May 1, 2003
    Applicant: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Patent number: 6448745
    Abstract: An apparatus and a method for controlling a converter of electronic power supply energy embodied for example as a boost converter or as a boost converter with a power factor correction (PFC) or being used as a DC to DC converter that is running in a discontinuous mode and which is using an equation to calculate the point of time of the zero current state of the storage inductor based on the ON time of the shunt switch and the voltages at the source and the load side. This method achieves a maximum power transfer by recharging of the storage inductor right after the zero current state is reached. The accuracy of the voltage measurement is increased by calibration of the source and load voltage dividers. Minimizing distortion and harmonics is achieved by a fine adjustment of the energy transfer through fine-tuning of the pulse width of the switch overcoming the limitations of discrete time steps in clocked digital systems by toggling between neighboring ON time values of the switch.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: September 10, 2002
    Assignee: Dialog Semiconductor GmbH
    Inventor: Dirk Killat
  • Patent number: 6362667
    Abstract: The output driver circuit of an integrated circuit has several pairs of driver circuits and driver control circuits as well as a control device. Each pair of driver control circuit and driver circuit forms a driver stage. The driver stages are connected in series. Based on the input signal of the output driver circuit, the control device switches the signal direction through the succession of driver stages in such a way that, at the time the output driver circuit is switched either on or off, the driver stages are switched in a time delayed manner, whereby current pulses on the feeding lines and disturbance voltages induced in inductive loads are reduced.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 26, 2002
    Assignee: Infineon Technologies AG
    Inventors: Dirk Killat, Ordwin Haase, Heinz Werker