Patents by Inventor Dirk Matusch

Dirk Matusch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10920309
    Abstract: A nitrided packaging steel in the form of a flat steel product and method for producing a nitrided packaging steel with a carbon content of 10-1000 ppm and uncombined nitrogen, dissolved in the steel, of more than 100 ppm. The nitriding is performed in two stages: a first stage, in which a molten steel is nitrided to a nitrogen content of at most 160 ppm by introducing a nitrogen-containing gas and/or a nitrogen-containing solid into the molten steel, and a second stage, in which a flat steel product produced from the nitrided molten steel by cold rolling is treated with a nitrogen-containing gas in order to increase further the amount of uncombined nitrogen in the flat steel product.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: February 16, 2021
    Assignees: ThyssenKrupp Rasselstein GmbH, ThyssenKrupp AG
    Inventors: Burkhard Kaup, Blaise Massicot, Dirk Matusch
  • Publication number: 20170253957
    Abstract: A nitrided packaging steel in the form of a flat steel product and method for producing a nitrided packaging steel with a carbon content of 10-1000 ppm and uncombined nitrogen, dissolved in the steel, of more than 100 ppm. The nitriding is performed in two stages: a first stage, in which a molten steel is nitrided to a nitrogen content of at most 160 ppm by introducing a nitrogen-containing gas and/or a nitrogen-containing solid into the molten steel, and a second stage, in which a flat steel product produced from the nitrided molten steel by cold rolling is treated with a nitrogen-containing gas in order to increase further the amount of uncombined nitrogen in the flat steel product. The second stage is performed in an annealing furnace, in which the flat steel product is at the same time annealed in a recrystallizing manner.
    Type: Application
    Filed: July 2, 2015
    Publication date: September 7, 2017
    Applicants: ThyssenKrupp Rasselstein GmbH, ThyssenKrupp AG
    Inventors: Burkhard KAUP, Blaise MASSICOT, Dirk MATUSCH
  • Patent number: 9650692
    Abstract: The invention relates to a method for producing packaging steel consisting of a cold-rolled steel sheet made of unalloyed or low-alloy steel having a carbon content of less than 0.1%. In order to provide high-strength packaging steel that has good formability and high corrosion resistance and can be produced in as energy-saving a manner as possible, the steel sheet according to the invention is first coated with a metallic coating and then annealed in a recrystallizing manner at a heating rate of more than 75 K/s and preferably more than 100 K/s to temperatures of more than 700° C., such that the metallic coating melts. The coated and annealed steel sheet is then quenched to normal temperature at a cooling rate of at least 100 K/s.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 16, 2017
    Assignee: ThyssenKrupp Rasselstein GmbH
    Inventors: Anika Szesni, Helmut Oberhoffer, Martin Schlupp, Dirk Matusch, Reiner Sauer
  • Patent number: 9623473
    Abstract: The invention relates to the use of a steel sheet provided with a protective layer for producing a ring-pull top or a can having a ring-pull top, where the steel sheet is made of an unalloyed or low-alloy steel having a carbon content of less than 0.1% by weight, and also an associated process. The problem proceeding from known steel sheets having a protective layer, namely to provide a steel sheet by means of which ring-pull tops which for a constant residual wall thickness of the notch line have a lower tear-off force can be produced by means of the ring-pull top, is solved by the steel sheet being recrystallizingly heat treated at a heating rate of more than 75 K/s and after the recrystallizing heat treatment cooled at a cooling rate of at least 100 K/s and then coated with the protective layer.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 18, 2017
    Assignee: THYSSENKRUPP RASSELSTEIN GMBH
    Inventors: Karl Ernst Friedrich, Dirk Matusch, Burkhard Kaup, Reiner Sauer
  • Publication number: 20150258599
    Abstract: The invention relates to the use of a steel sheet provided with a protective layer for producing a ring-pull top or a can having a ring-pull top, where the steel sheet is made of an unalloyed or low-alloy steel having a carbon content of less than 0.1% by weight, and also an associated process. The problem proceeding from known steel sheets having a protective layer, namely to provide a steel sheet by means of which ring-pull tops which for a constant residual wall thickness of the notch line have a lower tear-off force can be produced by means of the ring-pull top, is solved by the steel sheet being recrystallizingly heat treated at a heating rate of more than 75 K/s and after the recrystallizing heat treatment cooled at a cooling rate of at least 100 K/s and then coated with the protective layer.
    Type: Application
    Filed: October 2, 2012
    Publication date: September 17, 2015
    Inventors: Karl Ernst Friedrich, Dirk Matusch, Burkhard Kaup, Reiner Sauer
  • Publication number: 20150024222
    Abstract: A process for passivation of strip steel plate, having the following steps: electrochemical treatment of the black plate by passing the black plate through an electrolyte to form an inert steel surface; rinsing the black plate; and application of an aqueous chromium-free treatment solution to at least one surface of the black plate to form a conversion layer that protects against corrosion and an adhesion layer for paints and organic coating materials. The black plate treated in accordance with this process is characterized by high corrosion resistance and has good bonding capacity for paints and organic coatings and therefore is very suitable as a substitute for tin-free steel (TFS or ECCS) and tinplate for the production of packagings, in particular cans. In contrast to the traditional manufacturing and passivation processes for tin-free steel and tinplate, no chromium VI, which is environmentally hazardous and hazardous to health, is used in this process.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Reiner SAUER, Andrea MARMANN, Helmut OBERHOFFER, Tatjana KASDORF, Gerhard MENZEL, Dirk MATUSCH, Rainer GOERTZ
  • Publication number: 20150017469
    Abstract: The invention relates to sheet steel for use as packaging steel, made of a non-alloy or low-alloy and cold-rolled steel having a carbon content of less than 0.1%. According to the invention, in order to use such sheet steel for packaging steel that has good formability and can be produced in a cost-effective way, the sheet steel contains less than 0.4 wt % of manganese, less than 0.04 wt % of silicium, less than 0.1 wt % of aluminum, and less than 0.1 wt % of chromium and is provided with a multi-phase structure, comprising ferrite and at least one of the structure constituents martensite, bainite, and/or residual austenite. The invention further relates to a method for producing such packaging steel from cold-rolled sheet steel.
    Type: Application
    Filed: October 2, 2012
    Publication date: January 15, 2015
    Inventors: Reiner Sauer, Burkhard Kaup, Dirk Matusch, Dimitrios Nouskalis
  • Publication number: 20150010779
    Abstract: The invention relates to a method for producing packaging steel consisting of a cold-rolled steel sheet made of unalloyed or low-alloy steel having a carbon content of less than 0.1%. In order to provide high-strength packaging steel that has good formability and high corrosion resistance and can be produced in as energy-saving a manner as possible, the steel sheet according to the invention is first coated with a metallic coating and then annealed in a recrystallising manner at a heating rate of more than 75 K/s and preferably more than 100 K/s to temperatures of more than 700° C., such that the metallic coating melts. The coated and annealed steel sheet is then quenched to normal temperature at a cooling rate of at least 100 K/s.
    Type: Application
    Filed: November 30, 2012
    Publication date: January 8, 2015
    Inventors: Anika Szesni, Helmut Oberhoffer, Martin Schlupp, Dirk Matusch, Reiner Sauer
  • Publication number: 20150001089
    Abstract: A method for improving a metal coating on a steel strip or a steel sheet or plate. The coating is melted to a maximum temperature above the melting temperature of the material of the coating by inductive heating performed by at least one induction coil and subsequently cooled to a quenching temperature, below the melting temperature, in a cooling device. In order to improve the corrosion stability of the coating, even in the case of thin coating layers, the coating is kept at a temperature above the melting temperature during a holding time and the holding time is adapted to the maximum temperature and the thickness of the coating by moving at least one of the induction coils with respect to the cooling device, in order to melt the coating completely over its entire thickness to the boundary layer with the steel strip.
    Type: Application
    Filed: January 22, 2013
    Publication date: January 1, 2015
    Inventors: Dirk Matusch, Reiner Sauer, Helmut Oberhoffer, Thomas Rainer, Markus Opper