Patents by Inventor Dirk Nolting

Dirk Nolting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220390840
    Abstract: A light-enhanced wafer processing system disclosed herein which includes a rotatable chuck configured to support and selectively rotate at least one wafer, at least one dispenser body configured to selectively flow at least one photolytic material onto a surface of the wafer, and at least one optical radiation source may be configured to provide optical radiation to at least a portion of the wafer having photolytic material applied thereto, wherein the optical radiation is configured to result in the formation of optically-induced radicals having enhanced reactivity with at least one material applied to the wafer.
    Type: Application
    Filed: June 1, 2022
    Publication date: December 8, 2022
    Inventors: Jens Fittkau, Christiane Le Tiec, Curt Rettig, Dirk Nolte, Kay Mittler, Carsten Becher
  • Patent number: 11515138
    Abstract: Trapping ions in an ion trapping assembly is described. In one aspect, this is implemented by introducing ions into the ion trapping assembly, applying a first RF trapping amplitude to the ion trapping assembly so as to trap introduced ions which have m/z ratios within a first range of m/z ratios, and cooling the trapped ions. In some aspects, also performed is reducing the RF trapping amplitude from the first RF trapping amplitude to a second, lower, RF trapping amplitude so as to reduce the low mass cut-off of the ion trapping assembly and trapping, at the second, lower RF trapping amplitude, introduced ions having m/z ratios within a second range of m/z ratios. A lower mass limit of the second range of m/z ratios is below the low mass cut-off of the ion trapping assembly when the first RF trapping amplitude is applied.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 29, 2022
    Assignee: THERMO FISHER SCIENTIFIC (BREMEN) GMBH
    Inventors: Dirk Nolting, Alexander A. Makarov, Amelia Corinne Peterson
  • Publication number: 20200294784
    Abstract: Trapping ions in an ion trapping assembly is described. In one aspect, this is implemented by introducing ions into the ion trapping assembly, applying a first RF trapping amplitude to the ion trapping assembly so as to trap introduced ions which have m/z ratios within a first range of m/z ratios, and cooling the trapped ions. In some aspects, also performed is reducing the RF trapping amplitude from the first RF trapping amplitude to a second, lower, RF trapping amplitude so as to reduce the low mass cut-off of the ion trapping assembly and trapping, at the second, lower RF trapping amplitude, introduced ions having m/z ratios within a second range of m/z ratios. A lower mass limit of the second range of m/z ratios is below the low mass cut-off of the ion trapping assembly when the first RF trapping amplitude is applied.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Dirk Nolting, Alexander A. Makarov, Amelia Corinne Petersen
  • Patent number: 9865441
    Abstract: The present disclosure provides a mass spectrometer for performing an analysis of sample ions, and a method for operating a mass spectrometer. The mass spectrometer comprises a first ion optical element that is supplied with a first gas; a mass analyzer, wherein the performance of the mass analyzer is dependent on the pressure of the first gas in the first ion optical element; and a controller for setting a property of the first gas, which comprises at least the pressure of the first gas, on the basis of a characteristic of the analysis to be performed by the mass spectrometer.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: January 9, 2018
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Nicolaie Eugen Damoc, Eduard Denisov, Dirk Nolting, Martin Zeller
  • Patent number: 9543131
    Abstract: Disclosed herein is a mass spectrometry method having steps of: transmitting ions from an ion source through a mass filter; processing ions received from the mass filter in a discontinuous ion optical device downstream of the mass filter; operating the mass filter for a plurality of periods in a mass/charge ratio (m/z) filtering mode to transmit ions in one or more selected ranges of m/z to the discontinuous ion optical device; and operating the mass filter in a broad mass range mode transmitting ions of a mass range substantially wider than any mass range transmitted in the m/z filtering mode during one or more periods in which the discontinuous ion optical device is not processing ions from the mass filter. Utilization of this method assists to reduce contamination in the mass filter.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: January 10, 2017
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Andreas Kuehn, Jan-Peter Hauschild, Dirk Nolting, Oliver Lange, Eugen Damoc
  • Patent number: 9460905
    Abstract: A method is proposed for assessing the vacuum conditions in a mass spectrometer (10) such as an ion cyclotron resonance or orbital trapping mass spectrometer. Such mass spectrometers generate a transient detection signal resulting from ions of one or species in an ion trap (80). The parameters of the trap and/or introduced ions are adjusted so as to cause the decay rate of the transient in respect of the ion species to be dominated by collisional effects. Typically this can be achieved by introducing ions into the trap (80) in quantities such that ion clouds of a particular ion species self bunch. The rate of decay of the transient signal in that case is determined and compared with one or more threshold decay rates. This in turn can provide an indication of vacuum conditions within the trap (80).
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: October 4, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Konstantin Aizikov, Dirk Nolting, Jan-Peter Hauschild
  • Patent number: 9396919
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 19, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 9245723
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: January 26, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 9117639
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 25, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 8963074
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 24, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20140224975
    Abstract: Disclosed herein is a mass spectrometry method having steps of: transmitting ions from an ion source through a mass filter; processing ions received from the mass filter in a discontinuous ion optical device downstream of the mass filter; operating the mass filter for a plurality of periods in a mass/charge ratio (m/z) filtering mode to transmit ions in one or more selected ranges of m/z to the discontinuous ion optical device; and operating the mass filter in a broad mass range mode transmitting ions of a mass range substantially wider than any mass range transmitted in the m/z filtering mode during one or more periods in which the discontinuous ion optical device is not processing ions from the mass filter. Utilization of this method assists to reduce contamination in the mass filter.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 14, 2014
    Applicant: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Andreas Kuehn, Jan-Peter Hauschild, Dirk Nolting, Oliver Lange, Eugen Damoc
  • Patent number: 8803082
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 8604419
    Abstract: A novel method and mass spectrometer apparatus is introduced to enable the simultaneous isolation of cations and anions (i.e., precursor and reagent ions) in a linear multipole ion trap via the application of an additional axial DC gradient in combination with coupled RF potential(s). Thus, the combination of the RF and DC voltages in such an arrangement forms a pseudopotential designed to provide for minima for the trapped positively and negatively charged particles that result in the overlap of the ion clouds so as to provide for beneficial ion/ion reactions.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: December 10, 2013
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Dirk Nolting, Jens Griep-Raming
  • Patent number: 8586914
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 8278618
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: October 2, 2012
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20110186724
    Abstract: A novel method and mass spectrometer apparatus is introduced to enable the simultaneous isolation of cations and anions (i.e., precursor and reagent ions) in a linear multipole ion trap via the application of an additional axial DC gradient in combination with coupled RF potential(s). Thus, the combination of the RF and DC voltages in such an arrangement forms a pseudopotential designed to provide for minima for the trapped positively and negatively charged particles that result in the overlap of the ion clouds so as to provide for beneficial ion/ion reactions.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventors: Dirk Nolting, Jens Griep-Raming
  • Publication number: 20110084205
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: June 3, 2009
    Publication date: April 14, 2011
    Inventors: Alexander A. Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Patent number: 6634846
    Abstract: The invention concerns a process and a device for unloading a mail piece container, open at the top, with sidewalls that slant toward the outside, that is loaded with mail pieces that stand upright next to one another. According to the invention, the mail piece stack, after having been compressed, is held by holding supports that are inserted into the container and that feature driven revolving conveyor bands. While the supports are being inserted, the conveyor bands are driven in such a way that the conveyor band segments in contact with the mail piece stack are motionless with respect to the mail pieces. Next, the container is tilted by >90° along with the mail pieces and the holding supports. After the container is tilted back somewhat, a base plate is inserted and the whole ensemble is tilted back to the point where the stack stands on the horizontally positioned base plate. Then the container is removed towards the bottom.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: October 21, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Enenkel, Armin Zimmermann, Dirk Nolte
  • Patent number: 6508352
    Abstract: The stack of flat mail pieces that are arranged adjacent to one another on a support can be portioned with the aid of at least one displaceable holding support containing a conveyor belt because the support is divided into a horizontally oriented, stationary section and an adjacent section that can be pivoted about a pivoting axis positioned at the end of the pivotable section in the stacking direction. During the portioning process, the pivotable section extending downward at an angle from the stationary section is pivoted downward into a horizontal position. A holding support with a conveyor belt that is driven downward during the pivoting process is arranged underneath the stationary section at its border with the pivotable section. An additional support is arranged on the frame of the pivotable section of the support above the mail pieces. This additional support holds the stack remaining on the stationary section of the support.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: January 21, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Enenkel, Armin Zimmermann, Dirk Nolte