Patents by Inventor Dirk Nolting

Dirk Nolting has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11946825
    Abstract: A device for monitoring a shaft coupling coupling a first shaft to a second shaft includes an optical unit having a receiving element to receive electromagnetic radiation. A modifying unit modifies a radiant energy impinging on the receiving element as the first shaft runs asynchronously with respect to the second shaft. The modifying unit includes a holographic optical component designed for arrangement on and/or within the first shaft, and a diaphragm designed for arrangement on and/or within the second shaft and including radially arranged slots and radially arranged filled regions in an at least substantially regular sequence. The diaphragm includes an at least substantially centrally arranged opening. The holographic optical component is designed for illumination or irradiation with the electromagnetic radiation and generates a pattern having radially arranged areas with a first radiant energy and radially arranged areas with a second radiant energy in an at least substantially regular sequence.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: April 2, 2024
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jürgen Schimmer, Christoph Nolting, Dirk Scheibner, Jürgen Zettner
  • Patent number: 11515138
    Abstract: Trapping ions in an ion trapping assembly is described. In one aspect, this is implemented by introducing ions into the ion trapping assembly, applying a first RF trapping amplitude to the ion trapping assembly so as to trap introduced ions which have m/z ratios within a first range of m/z ratios, and cooling the trapped ions. In some aspects, also performed is reducing the RF trapping amplitude from the first RF trapping amplitude to a second, lower, RF trapping amplitude so as to reduce the low mass cut-off of the ion trapping assembly and trapping, at the second, lower RF trapping amplitude, introduced ions having m/z ratios within a second range of m/z ratios. A lower mass limit of the second range of m/z ratios is below the low mass cut-off of the ion trapping assembly when the first RF trapping amplitude is applied.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 29, 2022
    Assignee: THERMO FISHER SCIENTIFIC (BREMEN) GMBH
    Inventors: Dirk Nolting, Alexander A. Makarov, Amelia Corinne Peterson
  • Publication number: 20200294784
    Abstract: Trapping ions in an ion trapping assembly is described. In one aspect, this is implemented by introducing ions into the ion trapping assembly, applying a first RF trapping amplitude to the ion trapping assembly so as to trap introduced ions which have m/z ratios within a first range of m/z ratios, and cooling the trapped ions. In some aspects, also performed is reducing the RF trapping amplitude from the first RF trapping amplitude to a second, lower, RF trapping amplitude so as to reduce the low mass cut-off of the ion trapping assembly and trapping, at the second, lower RF trapping amplitude, introduced ions having m/z ratios within a second range of m/z ratios. A lower mass limit of the second range of m/z ratios is below the low mass cut-off of the ion trapping assembly when the first RF trapping amplitude is applied.
    Type: Application
    Filed: March 11, 2020
    Publication date: September 17, 2020
    Inventors: Dirk Nolting, Alexander A. Makarov, Amelia Corinne Petersen
  • Patent number: 9865441
    Abstract: The present disclosure provides a mass spectrometer for performing an analysis of sample ions, and a method for operating a mass spectrometer. The mass spectrometer comprises a first ion optical element that is supplied with a first gas; a mass analyzer, wherein the performance of the mass analyzer is dependent on the pressure of the first gas in the first ion optical element; and a controller for setting a property of the first gas, which comprises at least the pressure of the first gas, on the basis of a characteristic of the analysis to be performed by the mass spectrometer.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: January 9, 2018
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Nicolaie Eugen Damoc, Eduard Denisov, Dirk Nolting, Martin Zeller
  • Patent number: 9543131
    Abstract: Disclosed herein is a mass spectrometry method having steps of: transmitting ions from an ion source through a mass filter; processing ions received from the mass filter in a discontinuous ion optical device downstream of the mass filter; operating the mass filter for a plurality of periods in a mass/charge ratio (m/z) filtering mode to transmit ions in one or more selected ranges of m/z to the discontinuous ion optical device; and operating the mass filter in a broad mass range mode transmitting ions of a mass range substantially wider than any mass range transmitted in the m/z filtering mode during one or more periods in which the discontinuous ion optical device is not processing ions from the mass filter. Utilization of this method assists to reduce contamination in the mass filter.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: January 10, 2017
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Andreas Kuehn, Jan-Peter Hauschild, Dirk Nolting, Oliver Lange, Eugen Damoc
  • Patent number: 9460905
    Abstract: A method is proposed for assessing the vacuum conditions in a mass spectrometer (10) such as an ion cyclotron resonance or orbital trapping mass spectrometer. Such mass spectrometers generate a transient detection signal resulting from ions of one or species in an ion trap (80). The parameters of the trap and/or introduced ions are adjusted so as to cause the decay rate of the transient in respect of the ion species to be dominated by collisional effects. Typically this can be achieved by introducing ions into the trap (80) in quantities such that ion clouds of a particular ion species self bunch. The rate of decay of the transient signal in that case is determined and compared with one or more threshold decay rates. This in turn can provide an indication of vacuum conditions within the trap (80).
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: October 4, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Konstantin Aizikov, Dirk Nolting, Jan-Peter Hauschild
  • Patent number: 9396919
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 19, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20160203964
    Abstract: The present disclosure provides a mass spectrometer for performing an analysis of sample ions, and a method for operating a mass spectrometer. The mass spectrometer comprises a first ion optical element that is supplied with a first gas; a mass analyzer, wherein the performance of the mass analyzer is dependent on the pressure of the first gas in the first ion optical element; and a controller for setting a property of the first gas, which comprises at least the pressure of the first gas, on the basis of a characteristic of the analysis to be performed by the mass spectrometer.
    Type: Application
    Filed: August 21, 2014
    Publication date: July 14, 2016
    Inventors: Nicolaie Eugen DAMOC, Eduard DENISOV, Dirk NOLTING, Martin ZELLER
  • Publication number: 20160141167
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: January 25, 2016
    Publication date: May 19, 2016
    Inventors: Alexander MAKAROV, Eduard V. DENISOV, Wilko BALSCHUN, Dirk NOLTING, Jens GRIEP-RAMING
  • Patent number: 9245723
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: January 26, 2016
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20150364308
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: August 24, 2015
    Publication date: December 17, 2015
    Inventors: Alexander MAKAROV, Eduard V. DENISOV, Wilko BALSCHUN, Dirk NOLTING, Jens GRIEP-RAMING
  • Publication number: 20150325424
    Abstract: A method is proposed for assessing the vacuum conditions in a mass spectrometer (10) such as an ion cyclotron resonance or orbital trapping mass spectrometer. Such mass spectrometers generate a transient detection signal resulting from ions of one or species in an ion trap (80). The parameters of the trap and/or introduced ions are adjusted so as to cause the decay rate of the transient in respect of the ion species to be dominated by collisional effects. Typically this can be achieved by introducing ions into the trap (80) in quantities such that ion clouds of a particular ion species self bunch. The rate of decay of the transient signal in that case is determined and compared with one or more threshold decay rates. This in turn can provide an indication of vacuum conditions within the trap (80).
    Type: Application
    Filed: April 14, 2015
    Publication date: November 12, 2015
    Inventors: Konstantin AIZIKOV, Dirk NOLTING
  • Patent number: 9117639
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 25, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20150170894
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: February 18, 2015
    Publication date: June 18, 2015
    Inventors: Alexander MAKAROV, Eduard V. DENISOV, Wilko BALSCHUN, Dirk NOLTING, Jens GRIEP-RAMING
  • Patent number: 8963074
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: February 24, 2015
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20140346343
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Alexander MAKAROV, Eduard V. DENISOV, Wilko BALSCHUN, Dirk NOLTING, Jens GRIEP-RAMING
  • Publication number: 20140224975
    Abstract: Disclosed herein is a mass spectrometry method having steps of: transmitting ions from an ion source through a mass filter; processing ions received from the mass filter in a discontinuous ion optical device downstream of the mass filter; operating the mass filter for a plurality of periods in a mass/charge ratio (m/z) filtering mode to transmit ions in one or more selected ranges of m/z to the discontinuous ion optical device; and operating the mass filter in a broad mass range mode transmitting ions of a mass range substantially wider than any mass range transmitted in the m/z filtering mode during one or more periods in which the discontinuous ion optical device is not processing ions from the mass filter. Utilization of this method assists to reduce contamination in the mass filter.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 14, 2014
    Applicant: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Andreas Kuehn, Jan-Peter Hauschild, Dirk Nolting, Oliver Lange, Eugen Damoc
  • Patent number: 8803082
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: August 12, 2014
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander Makarov, Eduard V. Denisov, Wilko Balschun, Dirk Nolting, Jens Griep-Raming
  • Publication number: 20140070091
    Abstract: A method of operating a gas-filled collision cell in a mass spectrometer is provided. The collision cell has a longitudinal axis. Ions are caused to enter the collision cell. A trapping field is generated within the collision cell so as to trap the ions within a trapping volume of the collision cell, the trapping volume being defined by the trapping field and extending along the longitudinal axis. Trapped ions are processed in the collision cell and a DC potential gradient is provided, using an electrode arrangement, resulting in a non-zero electric field at all points along the axial length of the trapping volume so as to cause processed ions to exit the collision cell. The electric field along the axial length of the trapping volume has a standard deviation that is no greater than its mean value.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicant: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Alexander MAKAROV, Eduard V. DENISOV, Wilko BALSCHUN, Dirk NOLTING, Jens GRIEP-RAMING
  • Patent number: 8604419
    Abstract: A novel method and mass spectrometer apparatus is introduced to enable the simultaneous isolation of cations and anions (i.e., precursor and reagent ions) in a linear multipole ion trap via the application of an additional axial DC gradient in combination with coupled RF potential(s). Thus, the combination of the RF and DC voltages in such an arrangement forms a pseudopotential designed to provide for minima for the trapped positively and negatively charged particles that result in the overlap of the ion clouds so as to provide for beneficial ion/ion reactions.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: December 10, 2013
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Dirk Nolting, Jens Griep-Raming