Patents by Inventor Dirk Poppe

Dirk Poppe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240116633
    Abstract: A movable cargo support for an aircraft cargo hold or passenger cabin includes a base member with its bottom surface having one or more support sections to support the base member on a floor surface. The base member includes wheel assemblies having a wheel member rotatable about a rotation axis and movably mounted on the base member to pivot about a steering axis of the wheel assembly and which can be altered between an extended position where the wheel member protrudes beyond the support plane and a retracted position where the wheel member does not extend beyond the support plane. Each wheel assembly has a biasing member biasing the wheel member towards the extended position and configured so the biasing force exceeds the force by X % at most which forces the wheel member towards the retracted position when the wheel members are on a floor surface and one or more cargo elements are on the support surface having the maximum allowable weight of the one or more cargo elements for the cargo support.
    Type: Application
    Filed: March 28, 2023
    Publication date: April 11, 2024
    Inventors: Dirk Meiranke, Ralf Schliwa, Hermann Benthien, Andreas Poppe
  • Publication number: 20230072241
    Abstract: A composite body comprising a porous layer (1) made from oxide particles connected to one another and partially to a substrate, containing at least one oxide of the elements Al, Zr, Ti or Si, and comprising a further porous layer (2) at least on one side, having oxide particles connected to one another and partially to the layer (1) and containing at least one oxide of the elements Al, Zr, Ti or Si, wherein the oxide particles in the layer (1) have a greater average particle size (d50 is 0.5 to 4 ?m) than the oxide particles in the layer (2) (d50 is 0.015 to 0.15 ?m), characterised in that a polymer coating (PB) is provided on or above the layer (2), containing one or more polysiloxanes. A method for producing corresponding composite bodies and to the use thereof.
    Type: Application
    Filed: January 6, 2021
    Publication date: March 9, 2023
    Applicant: EVONIK OPERATIONS GMBH
    Inventors: Christian HYING, Oliver CONRADI, Dirk POPPE, David GRZENIA, Kira KHALETSKAYA
  • Patent number: 10793731
    Abstract: The present invention relates to the technical field of 3D printing, in particular in the form of the binder jetting process in which particles in a powder bed are adhesive-bonded by means of a printed adhesive to give a three-dimensional object. The particles here can be inorganic materials, e.g. sand or a metal powder, or polymeric particles, such as polymethacrylates or polyamides. To this end, polymethacrylates can by way of example take the form of suspension polymers known as bead polymers. In this context the present invention in particular relates to, as powders for 3D printing, suspension polymers which differ from the prior art in that they comprise a hard phase and an uncrosslinked soft phase.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 6, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Stefan Bernhardt, Thomas Hasskerl, Dirk Poppe, Stephan Wieber
  • Patent number: 10695978
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particles in a powder bed are bonded by means of a printed adhesive to form a three-dimensional object. The particles may be inorganic particles, for example sand or a metal powder, or polymeric particulate, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 30, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Dirk Poppe, Andrea Fruth, Stefan Bernhardt, Stephan Wieber
  • Patent number: 10688718
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particulate material in a powder bed is bonded by means of a printed adhesive to form a three-dimensional object. The particulate materials may be inorganic materials, for example sand or a metal powder, or particulate polymeric materials, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers. The present invention relates to the use of porous particles in the binder jetting process, in particular of porous suspension polymers. These powders for 3-D printing differ from the prior art in that the porosity results in a faster and better absorption of the printed binder by the powder particles. A great advantage of this procedure is additionally that a product with less warpage is formed and that the end product has a better surface appearance.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 23, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Stephan Wieber, Dirk Poppe, Stefan Bernhardt, Markus Pridöhl, Sven Balk, Christian Meier, Senada Schaack, Thomas Hasskerl
  • Publication number: 20190299520
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particulate material in a powder bed is bonded by means of a printed adhesive to form a three-dimensional object. The particulate materials may be inorganic materials, for example sand or a metal powder, or particulate polymeric materials, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers. The present invention relates to the use of porous particles in the binder jetting process, in particular of porous suspension polymers. These powders for 3-D printing differ from the prior art in that the porosity results in a faster and better absorption of the printed binder by the powder particles. A great advantage of this procedure is additionally that a product with less warpage is formed and that the end product has a better surface appearance.
    Type: Application
    Filed: September 11, 2017
    Publication date: October 3, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Stephan Wieber, Dirk POPPE, Stefan BERNHARDT, Markus PRIDOHL, Sven BALK, Chrisian MEIER, Senada SCHAACK, Thomas HASSKERL
  • Publication number: 20190126542
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particles in a powder bed are bonded by means of a printed adhesive to form a three-dimensional object. The particles may be inorganic particles, for example sand or a metal powder, or polymeric particulate, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers.
    Type: Application
    Filed: April 4, 2017
    Publication date: May 2, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Dirk POPPE, Andrea FRUTH, Stefan BERNHARDT, Stephan WIEBER
  • Publication number: 20190127598
    Abstract: The present invention relates to the technical field of 3D printing, in particular in the form of the binder jetting process in which particles in a powder bed are adhesive-bonded by means of a printed adhesive to give a three-dimensional object. The particles here can be inorganic materials, e.g. sand or a metal powder, or polymeric particles, such as polymethacrylates or polyamides. To this end, polymethacrylates can by way of example take the form of suspension polymers known as bead polymers. In this context the present invention in particular relates to, as powders for 3D printing, suspension polymers which differ from the prior art in that they comprise a hard phase and an uncrosslinked soft phase.
    Type: Application
    Filed: April 12, 2017
    Publication date: May 2, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Stefan Bernhardt, Thomas HASSKERL, Dirk POPPE, Stephan WIEBER
  • Patent number: 9701588
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: July 11, 2017
    Assignee: Evonik Roehm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Patent number: 9573272
    Abstract: The invention relates to an operating method for a positioning system 1, in particular for the structural assembly of aircraft, wherein the positioning system 1 comprises a plurality of positioners 2a, 2b, 2c, each of which has at least one manipulator M. The manipulators M grasp a component B and manipulate it in a synchronized manner, while it is jointly grasped by the manipulators M.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: February 21, 2017
    Assignee: BA Assembly & Turnkey Systems GmbH
    Inventors: Alexander Meiβner, Jens Häcker, Dirk Poppe, Nihat Biyiklioglu, Taoufik Mbarek
  • Patent number: 9433969
    Abstract: A 3D extrusion print process for producing multicolored three-dimensional objects is provided. The process produces mechanically stable, multicolored 3D objects with good color definition. The process according to the invention is based on coating, upstream of the printing head, of the polymer strand used for producing the actual object, and on fixing of the coating upstream of entry of the polymer strand into the printing head. Downstream of the extrusion process in the printing head, the coating remains predominantly at the surface of the extruded strand.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: September 6, 2016
    Assignee: EVONIK RÖHM GmbH
    Inventors: Markus Pridoehl, Guenter Schmitt, Dirk Poppe, Stephan Kohlstruk, Benjamin Hammann, Sonja Cremer, Kris Beks, Ludo Dewaelheyns
  • Publication number: 20160176765
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Applicant: Evonik Roehm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Patent number: 9284230
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: March 15, 2016
    Assignee: Evonik Röhm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Patent number: 9283714
    Abstract: The invention relates to a modified fused deposition modeling process for production of multicolored three-dimensional objects. More particularly, the invention relates to a 3D printing process with which 3D objects with particularly good color appearance compared to the prior art can be produced. The process according to the invention is based on coloring of the polymer strand used for production of the actual object in the nozzle, and on using a mixing apparatus which comprises a plurality of injection needles, a static mixer or a dynamic mixer.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 15, 2016
    Assignee: Evonik Röhm GmbH
    Inventors: Markus Pridoehl, Guenter Schmitt, Dirk Poppe, Stephan Kohlstruk, Benjamin Hammann, Sonja Cremer, Kris Beks, Ludo Dewaelheyns
  • Publication number: 20160059488
    Abstract: The invention relates to a modified fused deposition modeling process for production of multicolored three-dimensional objects. More particularly, the invention relates to a 3D printing process with which 3D objects with particularly good color appearance compared to the prior art can be produced. The process according to the invention is based on coloring of the polymer strand used for production of the actual object in the nozzle, and on using a mixing apparatus which comprises a plurality of injection needles, a static mixer or a dynamic mixer.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 3, 2016
    Applicant: EVONIK ROEHM GmbH
    Inventors: Markus PRIDOEHL, Guenter SCHMITT, Dirk POPPE, Stephan KOHLSTRUK, Benjamin HAMMANN, Sonja CREMER, Kris BEKS, Ludo DEWAELHEYNS
  • Publication number: 20150361236
    Abstract: The invention relates to a foamable bead polymer consisting of (meth)acrylonitrile, (meth)acrylic acid, copolymerizable latent blowing agents and optionally (meth)acrylic esters, the preparation thereof by suspension polymerization and the use thereof for producing foams. Such a bead polymer makes it possible, for example, to carry out in-mould foaming in a simple way and thus produce products having the shape of the desired workpiece directly. These workpieces are highly suitable as components in space, air, water and land vehicles and for other construction elements.
    Type: Application
    Filed: January 15, 2014
    Publication date: December 17, 2015
    Applicant: Evonik Roehm GmbH
    Inventors: Thomas RICHTER, Sabine SCHWARZ-BARAC, Kay BERNHARD, Ina PIOTROWSKI, Michael SCHNABEL, Sabrina SCHWEITZER, Dirk POPPE, Johannes VORHOLZ
  • Publication number: 20140288695
    Abstract: The invention relates to an operating method for a positioning system 1, in particular for the structural assembly of aircraft, wherein the positioning system 1 comprises a plurality of positioners 2a, 2b, 2c, each of which has at least one manipulator M. The manipulators M grasp a component B and manipulate it in a synchronised manner, while it is jointly grasped by the manipulators M.
    Type: Application
    Filed: October 15, 2012
    Publication date: September 25, 2014
    Inventors: Alexander Meissner, Jens Häcker, Dirk Poppe, Nihat Biyiklioglu, Taoufik Mbarek
  • Patent number: 8822590
    Abstract: The invention relates to a novel support material for the fused deposition modelling process for producing three-dimensional objects. The invention relates more particularly to a 3D printing process involving support materials which are easier to remove than in the prior art. The support materials according to the invention are styrene-maleic anhydride copolymers for example.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 2, 2014
    Assignee: Evonik Röhm GmbH
    Inventors: Florian Hermes, Stefan Bernhardt, Dirk Poppe, Guenter Schmitt, Markus Pridoehl, Gerd Loehden
  • Publication number: 20140228211
    Abstract: The present invention relates to a novel process for producing ceramic materials, in particular refractory materials having a reduced relative density. In particular, the invention relates to a process for producing light, refractory materials having non-contiguous pores based on shaped and unshaped materials. These materials can be used as working lining in high-temperature applications. The process is based on the production of spherical, closed and isolated pores in the microstructure of the material. The pores having a pore diameter which can be set in a targeted manner are generated by use of polymer particles, in particular polymethacrylates, in particular polymers or copolymers prepared by means of suspension polymerization, as pore formers which can be burnt out. The polymers or copolymers are present in the form of small spheres having a defined diameter.
    Type: Application
    Filed: August 23, 2012
    Publication date: August 14, 2014
    Applicant: Evonik Roehm GmbH
    Inventors: Tadeusz Von Rymon Lipinski, Bruno Keller, Frank Beissmann, Peter Neugebauer, Ruth Kernke, Dirk Poppe
  • Publication number: 20140194585
    Abstract: The invention relates to the synthesis of (meth)acrylate-based mass polymers which are soluble in aqueous alkaline. The invention in particular relates to the synthesis of polymers by means of a mass polymerization. Said mass polymers have a significantly improved solubility in aqueous alkaline media over corresponding polymers produced by means of a heterogeneous aqueous polymerization method, such as emulsion or suspension polymerization. Improved solubility in said context refers to the dissolution rate being faster among particles of equal size, to no significant turbidity remaining after dissolution and to the viscosity of the obtained solutions being lower at the identical ratio of solids content. Furthermore, the compatibility of the compounds according to the invention with water-based varnishes is at least comparable or even improved.
    Type: Application
    Filed: March 11, 2014
    Publication date: July 10, 2014
    Applicant: Evonik Roehm GmbH
    Inventors: Dirk POPPE, Wolfgang Janas, Frank Kleinsteinberg, Anja Christofzik