Patents by Inventor Dirk Robert Englund

Dirk Robert Englund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170351293
    Abstract: An optical neural network is constructed based on photonic integrated circuits to perform neuromorphic computing. In the optical neural network, matrix multiplication is implemented using one or more optical interference units, which can apply an arbitrary weighting matrix multiplication to an array of input optical signals. Nonlinear activation is realized by an optical nonlinearity unit, which can be based on nonlinear optical effects, such as saturable absorption. These calculations are implemented optically, thereby resulting in high calculation speeds and low power consumption in the optical neural network.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Jacques Johannes Carolan, Mihika PRABHU, Scott SKIRLO, Yichen SHEN, Marin SOLJACIC, Nicholas Christopher HARRIS, Dirk Robert ENGLUND
  • Patent number: 9798219
    Abstract: A photon source to deliver single photons includes a storage ring resonator to receive pump photons and generate a signal photon and an idler photon. An idler resonator is coupled to the storage resonator to couple the idler photon out of the storage resonator and into a detector. Detection of the idler photon stops the pump photons from entering the storage resonator. A signal resonator is coupled to the storage resonator to couple out the signal photon remaining in the storage resonator and delivers the signal photon to applications. The photon source can be fabricated into a photonic integrated circuit to achieve high compactness, reliability, and controllability.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: October 24, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Mihir Pant, Dirk Robert Englund, Mikkel Heuck
  • Publication number: 20170293082
    Abstract: A large-scale tunable-coupling ring array includes an input waveguide coupled to multiple ring resonators, each of which has a distinct resonant wavelength. The collective effect of these multiple ring resonators is to impart a distinct time delay to a distinct wavelength component (or frequency component) in an input signal, thereby carrying out quantum scrambling of the input signal. The scrambled signal is received by a receiver also using a large-scale tunable-coupling ring array. This receiver-end ring resonator array recovers the input signal by imparting a compensatory time delay to each wavelength component. Each ring resonator can be coupled to the input waveguide via a corresponding Mach Zehnder interferometer (MZI). The MZI includes a phase shifter on at least one of its arms to increase the tunability of the ring array.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 12, 2017
    Inventors: Jacob C. MOWER, Jelena NOTAROS, Mikkel HEUCK, Dirk Robert ENGLUND, Cosmo LUPO, Seth LLOYD
  • Patent number: 9766181
    Abstract: Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: September 19, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Dirk Robert Englund, Matthew Edwin Trusheim
  • Publication number: 20170212405
    Abstract: A photon source to deliver single photons includes a storage ring resonator to receive pump photons and generate a signal photon and an idler photon. An idler resonator is coupled to the storage resonator to couple the idler photon out of the storage resonator and into a detector. Detection of the idler photon stops the pump photons from entering the storage resonator. A signal resonator is coupled to the storage resonator to couple out the signal photon remaining in the storage resonator and delivers the signal photon to applications. The photon source can be fabricated into a photonic integrated circuit to achieve high compactness, reliability, and controllability.
    Type: Application
    Filed: June 3, 2016
    Publication date: July 27, 2017
    Inventors: Mihir PANT, Dirk Robert ENGLUND, Mikkel HEUCK
  • Patent number: 9709440
    Abstract: Multimode interference can be used to achieve ultra-high resolving powers (e.g., Q>105) with linewidths down to 10 pm at 1500 nm and a broad spectroscopy range (e.g., 400-2400 nm) within a monolithic, millimeter-scale device. For instance, multimode interference (MMI) in a tapered waveguide enables fine resolution and broadband spectroscopy in a compact, monolithic device. The operating range is limited by the transparency of the waveguide material and the sensitivity of the camera; thus, the technique can be easily extended into the ultraviolet and mid- and deep-infrared spectrum. Experiments show that a tapered fiber multimode interference spectrometer can operate across a range from 500 nm to 1600 nm (B=1.0576) without moving parts. The technique is suitable for on-chip tapered multimode waveguides, which could be fabricated in high volume by printing or optical lithography, for applications from biochemical sensing to the life and physical sciences.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 18, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Dirk Robert Englund, Edward H. Chen, Fan Meng, Tim Schroder, Noel Heng Loon Wang, Ren-Jye Shiue
  • Patent number: 9588416
    Abstract: Apparatus for nanofabrication on an unconventional substrate including a patterned pliable membrane mechanically coupled to a membrane support structure, a substrate support structure to receive a substrate for processing, and an actuator to adjust the distance between the pliable membrane and the substrate. Nanofabrication on conventional and unconventional substrates can be achieved by transferring a pre-formed patterned pliable membrane onto the substrate using a transfer probe or non-stick sheet, followed by irradiating the substrate through the patterned pliable membrane so as to transfer the pattern on the pliable membrane into or out of the substrate. The apparatus and methods allow fabrication of diamond photonic crystals, fiber-integrated photonic devices and Nitrogen Vacancy (NV) centers in diamonds.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: March 7, 2017
    Assignee: Columbia University
    Inventors: Dirk Robert Englund, Igal Bayn, Luozhou Li
  • Publication number: 20160352515
    Abstract: Systems, apparatus, and methods using an integrated photonic chip capable of operating at rates higher than a Gigahertz for quantum key distribution are disclosed. The system includes two identical transmitter chips and one receiver chip. The transmitter chips encode photonic qubits by modulating phase-randomized attenuated laser light within two early or late time-bins. Each transmitter chip can produce a single-photon pulse either in one of the two time-bins or as a superposition of the two time-bins with or without any phase difference. The pulse modulation is achieved using ring resonators, and the phase difference between the two time-bins is obtained using thermo-optic phase shifters and/or time delay elements. The receiver chip employs either homodyne detection or heterodyne detection to perform Bell measurements.
    Type: Application
    Filed: June 10, 2016
    Publication date: December 1, 2016
    Inventors: Darius Bunandar, Nicholas Christopher Harris, Dirk Robert Englund
  • Publication number: 20150378261
    Abstract: Apparatus for nanofabrication on an unconventional substrate including a patterned pliable membrane mechanically coupled to a membrane support structure, a substrate support structure to receive a substrate for processing, and an actuator to adjust the distance between the pliable membrane and the substrate. Nanofabrication on conventional and unconventional substrates can be achieved by transferring a pre-formed patterned pliable membrane onto the substrate using a transfer probe or non-stick sheet, followed by irradiating the substrate through the patterned pliable membrane so as to transfer the pattern on the pliable membrane into or out of the substrate. The apparatus and methods allow fabrication of diamond photonic crystals, fiber-integrated photonic devices and Nitrogen Vacancy (NV) centers in diamonds.
    Type: Application
    Filed: November 10, 2014
    Publication date: December 31, 2015
    Inventors: Dirk Robert ENGLUND, Igal BAYN, Luozhou LI
  • Publication number: 20150192532
    Abstract: A light-trapping geometry enhances the sensitivity of strain, temperature, and/or electromagnetic field measurements using nitrogen vacancies in bulk diamond, which have exterior dimensions on the order of millimeters. In an example light-trapping geometry, a laser beam enters the bulk diamond, which may be at room temperature, through a facet or notch. The beam propagates along a path inside the bulk diamond that includes many total internal reflections off the diamond's surfaces. The NVs inside the bulk diamonds absorb the beam as it propagates. Photodetectors measure the transmitted beam or fluorescence emitted by the NVs. The resulting transmission or emission spectrum represents the NVs' quantum mechanical states, which in turn vary with temperature, magnetic field strength, electric field strength, strain/pressure, etc.
    Type: Application
    Filed: July 8, 2014
    Publication date: July 9, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Hannah A. Clevenson, Dirk Robert Englund
  • Publication number: 20150168217
    Abstract: Multimode interference can be used to achieve ultra-high resolving powers (e.g., Q>105) with linewidths down to 10 pm at 1500 nm and a broad spectroscopy range (e.g., 400-2400 nm) within a monolithic, millimeter-scale device. For instance, multimode interference (MMI) in a tapered waveguide enables fine resolution and broadband spectroscopy in a compact, monolithic device. The operating range is limited by the transparency of the waveguide material and the sensitivity of the camera; thus, the technique can be easily extended into the ultraviolet and mid- and deep-infrared spectrum. Experiments show that a tapered fiber multimode interference spectrometer can operate across a range from 500 nm to 1600 nm (B=1.0576) without moving parts. The technique is suitable for on-chip tapered multimode waveguides, which could be fabricated in high volume by printing or optical lithography, for applications from biochemical sensing to the life and physical sciences.
    Type: Application
    Filed: July 8, 2014
    Publication date: June 18, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Dirk Robert Englund, Edward H. Chen, Fan Meng, Tim Schroder, Noel Heng Loon Wang, Ren-Jye Shiue
  • Publication number: 20150001422
    Abstract: Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Dirk Robert Englund, Matthew Edwin Trusheim
  • Patent number: 7778296
    Abstract: Optical microcavity arrangements and approaches facilitate a variety of applications. According to an example embodiment of the present invention, an optical microcavity arrangement includes a microcrystal structure having a plurality of optical cavities therein to facilitate the control of light. Emitters such as colloidal quantum dots are optically coupled to the optical cavities by attaching or otherwise arranging a material, which includes the emitters, to the optical microcavity arrangement. In many applications, the emitters couple photons of a wavelength in a range of wavelengths selectively passed by the optical cavities, and are amenable to operation at relatively high temperatures (e.g., at about room temperature or higher), which is useful for a variety of applications.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: August 17, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jelena Vuckovic, Ilya Fushman, Dirk Robert Englund