Patents by Inventor Dirk Smits

Dirk Smits has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10261183
    Abstract: A system to determine a position of one or more objects includes a transmitter to emit a beam of photons to sequentially illuminate regions of one or more objects; multiple cameras that are spaced-apart with each camera having an array of pixels to detect photons; and one or more processor devices that execute stored instructions to perform actions of a method, including: directing the transmitter to sequentially illuminate regions of one or more objects with the beam of photons; for each of the regions, receiving, from the cameras, an array position of each pixel that detected photons of the beam reflected or scattered by the region of the one or more objects; and, for each of the regions detected by the cameras, determining a position of the regions using the received array positions of the pixels that detected the photons of the beam reflected or scattered by that region.
    Type: Grant
    Filed: December 23, 2017
    Date of Patent: April 16, 2019
    Inventor: Gerard Dirk Smits
  • Publication number: 20190028674
    Abstract: The invention is directed to recording, transmitting, and displaying a three-dimensional image of a face of a user in a video stream. Reflected light from a curved or geometrically shaped screen is employed to provide multiple perspective views of the user's face that are transformed into the image, which is communicated to remotely located other users. A head mounted projection display system is employed to capture the reflective light. The system includes a frame, that when worn by a user, wraps around and grips the user's head. Also, at least two separate image capture modules are included on the frame and generally positioned relatively adjacent to the left and right eyes of a user when the system is worn. Each module includes one or more sensor components, such as cameras, that are arranged to detect at least reflected non-visible light from a screen positioned in front of the user.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventor: Gerard Dirk Smits
  • Publication number: 20180364355
    Abstract: A LIDAR system includes a scanner; a receiver; and one or more processor devices to perform actions, including: scanning a continuous light beam over the field of view in a first scan pass; detecting photons of the continuous light beam that are reflected from one or more objects; determining a coarse range to the one or more objects based on times of departure of the photons of the continuous light beam and times of arrival of the photons at the receiver; scanning light pulses over the field of view in a second scan pass; detecting photons from the light pulses that are reflected from the one or more objects; and determining a refined range to the one or more objects based on times of departure of the photons of the light pulses and times of arrival of the photons at the receiver.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10157469
    Abstract: Systems and methods for machine vision are presented. Such machine vision includes ego-motion, as well as the segmentation and/or classification of image data of one or more targets of interest. The projection and detection of scanning light beams that generate a pattern are employed. Real-time continuous and accurate spatial-temporal 3D sensing is achieved. The relative motion between an observer and a projection surface is determined. A combination of visible and non-visible patterns, as well as a combination of visible and non-visible sensor arrays is employed to sense 3D coordinates of target features, as well as acquire color image data to generate 3D color images of targets. Stereoscopic pairs of cameras are employed to generate 3D image data. Such cameras are dynamically aligned and calibrated. Information may be encoded in the transmitted patterns. The information is decoded upon detection of the pattern and employed to determine features of the reflecting surface.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: December 18, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10145678
    Abstract: Using the same image sensor to capture both a two-dimensional (2D) image of a three-dimensional (3D) object and 3D depth measurements for the object. A laser point-scans the surface of the object with light spots, which are detected by a pixel array in the image sensor to generate the 3D depth profile of the object using triangulation. Each row of pixels in the pixel array forms an epipolar line of the corresponding laser scan line. Timestamping provides a correspondence between the pixel location of a captured light spot and the respective scan angle of the laser to remove any ambiguity in triangulation. An Analog-to-Digital Converter (ADC) in the image sensor generates a multi-bit output in the 2D mode and a binary output in the 3D mode to generate timestamps. Strong ambient light is rejected by switching the image sensor to a 3D logarithmic mode from a 3D linear mode.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: December 4, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yibing Michelle Wang, Ilia Ovsiannikov, Dirk Smits
  • Publication number: 20180336686
    Abstract: Systems and methods for machine vision are presented. Such machine vision includes ego-motion, as well as the segmentation and/or classification of image data of one or more targets of interest. The projection and detection of scanning light beams that generate a pattern are employed. Real-time continuous and accurate spatial-temporal 3D sensing is achieved. The relative motion between an observer and a projection surface is determined. A combination of visible and non-visible patterns, as well as a combination of visible and non-visible sensor arrays is employed to sense 3D coordinates of target features, as well as acquire color image data to generate 3D color images of targets. Stereoscopic pairs of cameras are employed to generate 3D image data. Such cameras are dynamically aligned and calibrated. Information may be encoded in the transmitted patterns. The information is decoded upon detection of the pattern and employed to determine features of the reflecting surface.
    Type: Application
    Filed: July 30, 2018
    Publication date: November 22, 2018
    Inventor: Gerard Dirk Smits
  • Publication number: 20180329204
    Abstract: A system to scan a field of view with light beams can include a scanning mirror arrangement having a mirror and a drive mechanism configured to rotate the mirror about an axis between two terminal positions; at least one light source configured to simultaneously produce at least a first light beam and a second light beam directed at the mirror from different directions. Upon rotation of the mirror, the first and second light beams can scan a field of view. Another example of a scanning mirror arrangement includes a mirror; hinges attached at opposite sides of the mirror; and a drive mechanism attached to the hinges and configured to twist the hinges resulting in a larger twist to the mirror, wherein the hinges are disposed between the drive mechanism and the mirror.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10121073
    Abstract: A system and method for authenticating a user of a device. A biometric camera system includes a light source having a variable illumination wavelength output, and a camera including an imaging sensor and a bandpass filter for filtering ambient illumination received at the imaging sensor. An optical image of a user, for example an image of an iris, is generated by illumination from the light source, filtered by the bandpass filter, and received at the imaging sensor. An authentication status of the user can be determined using the image.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: November 6, 2018
    Assignee: Samsung Electronics Co., LTD
    Inventor: Gerard Dirk Smits
  • Patent number: 10084990
    Abstract: The invention is directed to recording, transmitting, and displaying a three-dimensional image of a face of a user in a video stream. Reflected light from a curved or geometrically shaped screen is employed to provide multiple perspective views of the user's face that are transformed into the image, which is communicated to remotely located other users. A head mounted projection display system is employed to capture the reflective light. The system includes a frame, that when worn by a user, wraps around and grips the user's head. Also, at least two separate image capture modules are included on the frame and generally positioned relatively adjacent to the left and right eyes of a user when the system is worn. Each module includes one or more sensor components, such as cameras, that are arranged to detect at least reflected non-visible light from a screen positioned in front of the user.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 25, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10082664
    Abstract: Exemplary embodiments provide a tracking optics system for mobile devices. The tracking optics system may comprise a telescope longitudinally disposed in a case of the mobile device, wherein a length of the telescope is greater than a depth of the mobile device; an illuminator that emits a light source and low-power mode through the telescope towards a target of image capture; a two-axis gimbal mirror that is adjusted to steer the light source towards the target until the target is within a field of view of the telescope; and an image sensor that captures an image of the target in response to the illuminator emitting the light source in high power mode to flash the target.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: September 25, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dirk Smits
  • Publication number: 20180268215
    Abstract: Exemplary embodiments for a biometric camera system for a mobile device, comprise: a near infrared (NIR) light source on the mobile device that flashes a user of the mobile device with near infrared light during image capture; a biometric camera located on the mobile device offset from the NIR light source, the biometric camera comprising: an extended depth of field (EDOF) imaging lens; a bandpass filter located adjacent to the EDOF imaging lens to reject ambient light during image capture; and an imaging sensor located adjacent the bandpass filter that converts an optical image of an object into an electronic signal for image processing; and a processor configured to receive video images of an iris of a user from the image sensor, and attempt to match the video images of the iris with previously registered images stored in an iris database, wherein if a match is found, the user is authenticated.
    Type: Application
    Filed: May 1, 2018
    Publication date: September 20, 2018
    Inventors: Ilia Ovsiannikov, Yibing Michelle Wang, Yong-Hwa Park, Yong-Chul Cho, Heesun Yoon, ChangYoung Park, Dirk Smits
  • Patent number: 10067230
    Abstract: A LIDAR system includes a scanner; a receiver; and one or more processor devices to perform actions, including: scanning a continuous light beam over the field of view in a first scan pass; detecting photons of the continuous light beam that are reflected from one or more objects; determining a coarse range to the one or more objects based on times of departure of the photons of the continuous light beam and times of arrival of the photons at the receiver; scanning light pulses over the field of view in a second scan pass; detecting photons from the light pulses that are reflected from the one or more objects; and determining a refined range to the one or more objects based on times of departure of the photons of the light pulses and times of arrival of the photons at the receiver.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 4, 2018
    Inventor: Gerard Dirk Smits
  • Publication number: 20180246189
    Abstract: Embodiments are directed toward measuring a three dimensional range to a target. A transmitter emits light toward the target. An aperture may receive light reflections from the target. The aperture may direct the reflections toward a sensor that comprises rows of pixels that have columns. The sensor is offset a predetermined distance from the transmitter. Anticipated arrival times of the reflections on the sensor are based on the departure times and the predetermined offset distance. A portion of the pixels are sequentially activated based on the anticipated arrival times. The target's three dimensional range measurement is based on the reflections detected by the portion of the pixels.
    Type: Application
    Filed: September 1, 2017
    Publication date: August 30, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10061137
    Abstract: Embodiments are directed towards a system for enabling a user to view an image on a surface. The system may include projector(s), sensor, projection surface or screen, and processor. The projectors may project light for an image onto the surface. The sensor may detect light reflected off the surface. The surface may include multiple types of surface elements, such as multiple first elements positioned as border of a display area on the surface to provide feedback regarding the surface and multiple second elements positioned within the border of the display area to reflect the image to the user. The processor may determine characteristics of the border of the display area based on light reflected to the sensor from first elements. And it may modify parameters of the image based on the characteristics of the border of the display area.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: August 28, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 10043282
    Abstract: Systems and methods for machine vision are presented. Such machine vision includes ego-motion, as well as the segmentation and/or classification of image data of one or more targets of interest. The projection and detection of scanning light beams that generate a pattern are employed. Real-time continuous and accurate spatial-temporal 3D sensing is achieved. The relative motion between an observer and a projection surface is determined. A combination of visible and non-visible patterns, as well as a combination of visible and non-visible sensor arrays is employed to sense 3D coordinates of target features, as well as acquire color image data to generate 3D color images of targets. Stereoscopic pairs of cameras are employed to generate 3D image data. Such cameras are dynamically aligned and calibrated. Information may be encoded in the transmitted patterns. The information is decoded upon detection of the pattern and employed to determine features of the reflecting surface.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: August 7, 2018
    Inventor: Gerard Dirk Smits
  • Publication number: 20180180733
    Abstract: A system to determine a position of one or more objects includes a transmitter to emit a beam of photons to sequentially illuminate regions of one or more objects; multiple cameras that are spaced-apart with each camera having an array of pixels to detect photons; and one or more processor devices that execute stored instructions to perform actions of a method, including: directing the transmitter to sequentially illuminate regions of one or more objects with the beam of photons; for each of the regions, receiving, from the cameras, an array position of each pixel that detected photons of the beam reflected or scattered by the region of the one or more objects; and, for each of the regions detected by the cameras, determining a position of the regions using the received array positions of the pixels that detected the photons of the beam reflected or scattered by that region.
    Type: Application
    Filed: December 23, 2017
    Publication date: June 28, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 9971937
    Abstract: Exemplary embodiments for a biometric camera system for a mobile device, comprise: a near infrared (NIR) light source on the mobile device that flashes a user of the mobile device with near infrared light during image capture; a biometric camera located on the mobile device offset from the NIR light source, the biometric camera comprising: an extended depth of field (EDOF) imaging lens; a bandpass filter located adjacent to the EDOF imaging lens to reject ambient light during image capture; and an imaging sensor located adjacent the bandpass filter that converts an optical image of an object into an electronic signal for image processing; and a processor configured to receive video images of an iris of a user from the image sensor, and attempt to match the video images of the iris with previously registered images stored in an iris database, wherein if a match is found, the user is authenticated.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: May 15, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ilia Ovsiannikov, Yibing (Michelle) Wang, Yong-Hwa Park, Yong-Chul Cho, Heesun Yoon, ChangYoung Park, Dirk Smits
  • Publication number: 20180121724
    Abstract: Exemplary embodiments for a biometric camera system for a mobile device, comprise: a near infrared (NIR) light source on the mobile device that flashes a user of the mobile device with near infrared light during image capture; a biometric camera located on the mobile device offset from the NIR light source, the biometric camera comprising: an extended depth of field (EDOF) imaging lens; a bandpass filter located adjacent to the EDOF imaging lens to reject ambient light during image capture; and an imaging sensor located adjacent the bandpass filter that converts an optical image of an object into an electronic signal for image processing; and a processor configured to receive video images of an iris of a user from the image sensor, and attempt to match the video images of the iris with previously registered images stored in an iris database, wherein if a match is found, the user is authenticated.
    Type: Application
    Filed: September 29, 2014
    Publication date: May 3, 2018
    Inventors: Ilia Ovsiannikov, Yibing (Michelle) Wang, Yong-Hwa Park, Yong-Chul Cho, Heesun Yoon, ChangYoung Park, Dirk Smits
  • Publication number: 20180120436
    Abstract: A LIDAR system includes a scanner; a receiver; and one or more processor devices to perform actions, including: scanning a continuous light beam over the field of view in a first scan pass; detecting photons of the continuous light beam that are reflected from one or more objects; determining a coarse range to the one or more objects based on times of departure of the photons of the continuous light beam and times of arrival of the photons at the receiver; scanning light pulses over the field of view in a second scan pass; detecting photons from the light pulses that are reflected from the one or more objects; and determining a refined range to the one or more objects based on times of departure of the photons of the light pulses and times of arrival of the photons at the receiver
    Type: Application
    Filed: October 31, 2017
    Publication date: May 3, 2018
    Inventor: Gerard Dirk Smits
  • Patent number: 9946076
    Abstract: A system projects a user-viewable, computer-generated or -fed image, wherein a head-mounted projector is used to project an image onto a retro-reflective surface, so only the viewer can see the image. The projector is connected to a computer that contains software to create virtual 2-D and or 3-D images for viewing by the user. Further, one projector each is mounted on either side of the user's head, and, by choosing for example a retro angle of less than about 10 degrees, each eye can only see the image of one of the projectors at a give distance up to 3 meters, in this example, from the retro-reflective screen. The retro angle used may be reduced with larger viewing distance desired. These projectors use lasers to avoid the need for focusing, and in some cases there projectors use instead of lasers highly collimated LED light sources to avoid the need for focusing.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 17, 2018
    Inventors: Gerard Dirk Smits, Dan Kikinis