Patents by Inventor Dirk Zeidler

Dirk Zeidler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136146
    Abstract: A multi-beam particle beam system comprises a particle beam source for creating a beam of charged particles, and a beam splitter for splitting the beam into a bundle of particle beams. The beam splitter comprises a multi-aperture plate having openings. A particle optical unit is provided to focus each of the particle beams in an object plane. A correction optical unit is provided for compensating for at least one aberration of the particle optical unit and comprises three or five hexapod elements and a plurality of round lens elements. The hexapod elements are successively arranged between the particle source and the multi-aperture plate in the beam path. A round lens element is arranged between each pair of hexapod elements arranged directly in succession in the beam path.
    Type: Application
    Filed: October 16, 2023
    Publication date: April 25, 2024
    Inventors: Dirk Zeidler, Thomas Schmid
  • Publication number: 20240128051
    Abstract: A multi-beam charged particle system and a method of operating a multi-beam charged particle system can provide improved image contrast. The multi-beam charged particle system comprises a filter element or an active array element in a detection system, which can provide improved, anisotropic image contrast. The disclosure can be applied for applications of multi-beam charged particle system, where higher requirements on beam uniformity and throughput may be relevant.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Inventors: Dirk Zeidler, Bjoern Miksch, Maksym Kompaniiets
  • Publication number: 20240096587
    Abstract: A multi-beam charged particle inspection system and a method of operating a multi-beam charged particle inspection system for wafer inspection with high throughput and with high resolution and high reliability comprise a mechanism for reduction and compensation of a scanning induced aberration, such as a scanning distortion of a collective multi-beam raster scanner for beamlets propagating at an angle with respect to the optical axis of the multi-beam charged particle inspection system.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Dirk Zeidler, Thomas Schmid
  • Patent number: 11935721
    Abstract: A system includes a multi-beam particle microscope for imaging a 3D sample layer by layer, and a computer system with a multi-tier architecture is disclosed. The multi-tier architecture can allow for an optimized image processing by gradually reducing the amount of parallel processing speed when data exchange between different processing systems and/or of data originating from different detection channels takes place. A method images a 3D sample layer by layer. A computer program product includes a program code for carrying out the method.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Nico Kaemmer, Christian Crueger
  • Publication number: 20240079207
    Abstract: A multi-beam charged particle system and a method of setting a working distance WD of the multi beam charged particle system are provided. With the method, the working distance is adjusted while the imaging performance of a wafer inspection task is maintained by computing parameter values of components from predetermined calibration parameter values. The method can allow a relatively fast wafer inspection task even with a wafer stage with a fixed z-position parallel to an optical axis of the multi-beam charged particle system.
    Type: Application
    Filed: November 6, 2023
    Publication date: March 7, 2024
    Inventors: Michael Behnke, Ulrich Bihr, Christof Riedesel, Arne Thoma, Dirk Zeidler
  • Patent number: 11735393
    Abstract: A method for operating a multi-beam particle beam microscope includes: scanning a multiplicity of particle beams over an object; directing electron beams emanating from impingement locations of the particle beams at the object onto an electron converter; detecting first signals generated by impinging electrons in the electron converter via a plurality of detection elements of a first detection system during a first time period; detecting second signals generated by impinging electrons in the electron converter via a plurality of detection elements of a second detection system during a second time period; and assigning to the impingement locations the signals which were detected via the detection elements of the first detection system during the first time period, for example on the basis of the detection signals which were detected via the detection elements of the second detection system during the second time period.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: August 22, 2023
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Gregor Dellemann, Gunther Scheunert
  • Patent number: 11728130
    Abstract: A method, including: recording plural images of an object by scanning plural particle beams across the object and detecting signals generated by the particle beams, wherein the plural particle beams are generated by a multi-beam particle microscope; determining plural regions of interest; determining plural image regions in each of the recorded images; determining plural displacement vectors; and determining image distortions based on image data of the recorded images and the determined displacement vectors.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 15, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Zeidler, Thomas Korb, Philipp Huethwohl, Jens Timo Neumann, Christof Riedesel, Christian Wojek, Joaquin Correa, Wolfgang Hoegele
  • Publication number: 20230245852
    Abstract: A multiple particle beam microscope and an associated method can provide a fast autofocus around an adjustable working distance. A system can have one or more fast autofocus correction lenses for adapting, in high-frequency fashion, the focusing, the position, the landing angle and the rotation of individual particle beams upon incidence on a wafer surface during the wafer inspection. Fast autofocusing in the secondary path of the particle beam system can be implemented in analogous fashion. An additional increase in precision can be attained via fast aberration correction mechanism in the form of deflectors and/or stigmators.
    Type: Application
    Filed: March 16, 2023
    Publication date: August 3, 2023
    Inventors: Dirk Zeidler, Thomas Schmid, Ingo Mueller, Walter Pauls, Stefan Schubert
  • Publication number: 20230215686
    Abstract: A method for operating a multi-beam particle beam microscope includes: scanning a multiplicity of particle beams over an object; directing electron beams emanating from impingement locations of the particle beams at the object onto an electron converter; detecting first signals generated by impinging electrons in the electron converter via a plurality of detection elements of a first detection system during a first time period; detecting second signals generated by impinging electrons in the electron converter via a plurality of detection elements of a second detection system during a second time period; and assigning to the impingement locations the signals which were detected via the detection elements of the first detection system during the first time period, for example on the basis of the detection signals which were detected via the detection elements of the second detection system during the second time period.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Dirk Zeidler, Gregor Dellemann, Gunther Scheunert
  • Patent number: 11657999
    Abstract: A particle beam system includes a particle source to produce a first beam of charged particles. The particle beam system also includes a multiple beam producer to produce a plurality of partial beams from a first incident beam of charged particles. The partial beams are spaced apart spatially in a direction perpendicular to a propagation direction of the partial beams. The plurality of partial beams includes at least a first partial beam and a second partial beam. The particle beam system further includes an objective to focus incident partial beams in a first plane so that a first region, on which the first partial beam is incident in the first plane, is separated from a second region, on which a second partial beam is incident. The particle beam system also a detector system including a plurality of detection regions and a projective system.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 23, 2023
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Stefan Schubert
  • Patent number: 11645740
    Abstract: A method for detector equalization during the imaging of objects with a multi-beam particle microscope includes performing an equalization on the basis of individual images in or on the basis of overlap regions. For detector equalization, contrast values and/or brightness values are used and iterative methods can be employed.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: May 9, 2023
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Michael Behnke, Stefan Schubert, Christof Riedesel
  • Publication number: 20230065475
    Abstract: A particle beam system includes a multi-source system. The multi-source system comprises an electron emitter array as a particle multi-source. The inhomogeneous emission characteristics of the various emitters in this multi-source system are correctable, or pre-correctable for subsequent particle-optical imaging, via particle-optical components that are producible via MEMS technology. A beam current of the individual particle beams is adjustable in the multi-source system.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 2, 2023
    Inventors: Dirk Zeidler, Hans Fritz, Ingo Mueller
  • Publication number: 20230043036
    Abstract: A multi-beam charged particle inspection system and a method of operating a multi-beam charged particle inspection system for wafer inspection can provide high throughput with high resolution and high reliability. The method and the multi-beam charged particle beam inspection system can be configured to extract from a plurality of sensor data a set of control signals to control the multi-beam charged particle beam inspection system and thereby maintain the imaging specifications including a movement of a wafer stage during the wafer inspection task.
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Inventors: Dirk Zeidler, Ulrich Bihr, Andreas Adolf, Nicolas Kaufmann, Ingo Mueller, Michael Behnke
  • Patent number: 11562881
    Abstract: A charged particle beam system includes a charged particle source that generates a first charged particle beam and a multi beam generator that generates a plurality of charged particle beamlets from an incoming first charged particle beam. Each individual beamlet is spatially separated from other beamlets. The charged particle beam system also includes an objective lens that focuses incoming charged particle beamlets in a first plane so that a first region in which a first individual beamlet impinges in the first plane is spatially separated from a second region in which a second individual beamlet impinges in the first plane. The charged particle beam system also includes a projection system and a detector system including a plurality of individual detectors.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: January 24, 2023
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Stefan Schubert, Ingo Mueller, Joerg Jacobi, Mario Muetzel, Antonio Casares, Christof Riedesel
  • Patent number: 11562880
    Abstract: A particle beam system includes: a particle source to generate a beam of charged particles; a first multi-lens array including a first multiplicity of individually adjustable and focusing particle lenses so that at least some of the particles pass through openings in the multi-lens array in the form of a plurality of individual particle beams; a second multi-aperture plate including a multiplicity of second openings downstream of the first multi-lens array so that some of the particles which pass the first multi-lens array impinge on the second multi-aperture plate and some of the particles which pass the first multi-lens array pass through the openings in the second multi-aperture plate; and a controller configured to supply an individually adjustable voltage to the particle lenses of the first multi-lens array and thus individually adjust the focusing of the associated particle lens for each individual particle beam.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: January 24, 2023
    Assignee: Carl Zeiss MultiSEM GmbH
    Inventors: Dirk Zeidler, Hans Fritz, Ingo Mueller, Georgo Metalidis
  • Publication number: 20230005708
    Abstract: A method includes: providing position data for a plurality of areas on the sample which are to be inspected; providing a first raster arrangement of the plurality of individual particle beams, with a single field of view on the sample assigned to each individual particle beam; defining the position of a nominal scanning area in each single field of view in relation to the first raster arrangement, with the dimensions of the nominal scanning area smaller than the complete single field of view; determining an individual position deviation between a nominal scanning area and the area to be inspected for the at least one individual particle beam; changing the first raster arrangement based on the determined individual position deviation to produce a second raster arrangement of the plurality of individual particle beams; and area-wise scanning the sample using the plurality of individual particle beams in the second raster arrangement.
    Type: Application
    Filed: June 17, 2022
    Publication date: January 5, 2023
    Inventors: Dirk Zeidler, Daniel Boecker
  • Publication number: 20220392734
    Abstract: Certain improvements of multi-beam raster units such as multi-beam generating units and multi-beam deflector units of a multi-beam charged particle microscopes are provided. The improvements include design, fabrication and adjustment of multi-beam raster units including apertures of specific shape and dimensions. The improvements can enable multi-beam generation and multi-beam deflection or stigmation with higher precision. The improvements can be relevant for routine applications of multi-beam charged particle microscopes, for example in semiconductor inspection and review, where high reliability and high reproducibility and low machine-to-machine deviations are desirable.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 8, 2022
    Inventors: Yanko Sarov, Ulrich Bihr, Hans Fritz, Dirk Zeidler, Georg Kurij, Ralf Lenke, AndrĂ¡s G. Major, Christof Riedesel
  • Patent number: 11521827
    Abstract: A fast method of imaging a 2D sample with a multi-beam particle microscope includes the following steps: providing a layer of the 2D sample; determining a feature size of features included in the layer; determining a pixel size based on the determined feature size in the layer; determining a beam pitch size between individual beams in the layer based on the determined pixel size; and imaging the layer of the 2D sample with a setting of the multi-beam particle microscope based on the determined pixel size and based on the determined beam pitch size.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: December 6, 2022
    Inventors: Dirk Zeidler, Anna Lena Eberle
  • Publication number: 20220277927
    Abstract: A particle beam system, such as a multi-beam particle microscope, includes a multi-beam deflection device and a beam stop. The multi-beam deflection device is arranged in the particle-optical beam path downstream of the multi-beam generator and upstream of the beam switch of the particle beam system. The multi-beam deflection device serves collectively blanks a multiplicity of charged individual particle beams. These impinge on a beam stop, which is arranged in the particle-optical beam path level with a site at which a particle beam diameter is reduced or is at a minimum. By way of example, such sites are the cross-over plane of the individual particle beams or an intermediate image plane. Associated methods for operating the particle beam system and associated computer program products are disclosed.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 1, 2022
    Inventors: Stefan Schubert, Dieter Schumacher, Erik Essers, Ingo Mueller, Arne Thoma, Joerg Jacobi, Wilhelm Bolsinger, Dirk Zeidler
  • Publication number: 20220254600
    Abstract: A method for voltage contrast imaging, for example on a semiconductor sample, uses a corpuscular multi-beam microscope with a multiplicity of individual corpuscular beams in a grid arrangement. The method includes sweeping the multiplicity of individual corpuscular beams over a sample having at least one electrically chargeable structure, and charging the sample with a first quantity of first corpuscular beams of the corpuscular multi-beam microscope. The method also includes determining a voltage contrast at the at least one electrically chargeable structure of the sample with a second quantity of second corpuscular beams of the corpuscular multi-beam microscope.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 11, 2022
    Inventors: Gregor Frank Dellemann, Stefan Schubert, Dirk Zeidler