Patents by Inventor Disha B. Sheth
Disha B. Sheth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12114975Abstract: Various examples are directed to systems and methods for operating an analyte sensor system using sensor electronics. An example method may comprise applying a bias voltage change to an analyte sensor bias voltage and measuring a current value for each of a plurality of time periods after application of the bias voltage change. The example method may also comprise determining an estimated impedance using the current values for the plurality of time periods and determining a characteristic of the analyte sensor using the estimated impedance. The example method may further comprise receiving from the analyte sensor a signal indicative of an analyte concentration, and determining an estimated analyte concentration level using the determined characteristic of the analyte sensor and the received signal.Type: GrantFiled: December 27, 2019Date of Patent: October 15, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth
-
Publication number: 20240293050Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: ApplicationFiled: April 25, 2024Publication date: September 5, 2024Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
-
Patent number: 12048540Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.Type: GrantFiled: January 29, 2019Date of Patent: July 30, 2024Assignee: Dexcom, Inc.Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Davis, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
-
Patent number: 12029560Abstract: Various examples are directed to systems and methods of and using analyte sensors. An example analyte sensor system comprises an analyte sensor and a hardware device in communication with the analyte sensor. The hardware device may be configured to perform operations comprising applying a first bias voltage to the analyte sensor, the first bias voltage less than an operational bias voltage of the analyte sensor, measuring a first current at the analyte sensor when the first bias voltage is applied, and applying a second bias voltage to the analyte sensor. The operations may further comprise measuring a second current at the analyte sensor when the second bias voltage is applied, detecting a plateau bias voltage using the first current and the second current, determining that the plateau bias voltage is less than a plateau bias voltage threshold, and executing a responsive action at the analyte sensor.Type: GrantFiled: December 27, 2019Date of Patent: July 9, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Nicholas Kalfas, Vincent P. Crabtree, Kamuran Turksoy
-
Patent number: 11992312Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: GrantFiled: June 8, 2021Date of Patent: May 28, 2024Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
-
Patent number: 11963767Abstract: Various examples described herein are directed to systems and methods of detecting damage to an analyte sensor using analyte sensor impedance values. In some examples, a method of assessing sensor membrane integrity using sensor electronics comprises determining an impedance parameter of an analyte sensor and determining a membrane integrity state of the analyte sensor based on the impedance parameter.Type: GrantFiled: December 27, 2019Date of Patent: April 23, 2024Assignee: Dexcom, Inc.Inventors: Sebastian Bohm, Anna Claire Harley-Trochimczyk, Daiting Rong, Rui Ma, Wenjie Lan, Minglian Shi, Disha B. Sheth, Vincent P. Crabtree, Kamuran Turksoy
-
Publication number: 20240049998Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: ApplicationFiled: October 25, 2023Publication date: February 15, 2024Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Patent number: 11832943Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: GrantFiled: January 22, 2021Date of Patent: December 5, 2023Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Publication number: 20230293067Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: ApplicationFiled: May 23, 2023Publication date: September 21, 2023Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Patent number: 11714060Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.Type: GrantFiled: May 2, 2019Date of Patent: August 1, 2023Assignee: Dexcom, Inc.Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
-
Patent number: 11696710Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: GrantFiled: June 30, 2020Date of Patent: July 11, 2023Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Patent number: 11656195Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.Type: GrantFiled: May 2, 2019Date of Patent: May 23, 2023Assignee: Dexcom, Inc.Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
-
Patent number: 11559230Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.Type: GrantFiled: January 22, 2019Date of Patent: January 24, 2023Assignee: Dexcom, Inc.Inventors: Anna Claire Harley-Trochimczyk, Sebastian Böhm, Rui Ma, Disha B. Sheth, Minglian Shi, Kamuran Turksoy
-
Patent number: 11484233Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.Type: GrantFiled: January 22, 2019Date of Patent: November 1, 2022Assignee: Dexcom, Inc.Inventors: Anna Claire Harley-Trochimczyk, Sebastian Böhm, Rui Ma, Disha B. Sheth, Minglian Shi, Kamuran Turksoy
-
Patent number: 11484232Abstract: This document discusses, among other things, systems and methods to compensate for the effects of temperature on sensors, such as analyte sensor. An example method may include determining a temperature-compensated glucose concentration level by receiving a temperature signal indicative of a temperature parameter of an external component, receiving a glucose signal indicative of an in vivo glucose concentration level, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.Type: GrantFiled: January 22, 2019Date of Patent: November 1, 2022Assignee: Dexcom, Inc.Inventors: Anna Claire Harley-Trochimczyk, Sebastian Böhm, Rui Ma, Disha B. Sheth, Minglian Shi, Kamuran Turksoy
-
Publication number: 20210361200Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: ApplicationFiled: June 8, 2021Publication date: November 25, 2021Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
-
Publication number: 20210275063Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: ApplicationFiled: January 22, 2021Publication date: September 9, 2021Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Patent number: 11058329Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: GrantFiled: October 30, 2017Date of Patent: July 13, 2021Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, Maria Noel Brown Wells, John Patrick Majewski, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
-
Patent number: 10932709Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.Type: GrantFiled: December 9, 2015Date of Patent: March 2, 2021Assignee: DEXCOM, INC.Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
-
Patent number: 10827955Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.Type: GrantFiled: October 30, 2017Date of Patent: November 10, 2020Assignee: DexCom, Inc.Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint