Patents by Inventor Divakar Rajamohan

Divakar Rajamohan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230101391
    Abstract: A nozzle body of a fuel injector includes a proximal end, a distal end spaced apart from the proximal end, and at least one spray hole positioned at the distal end. The at least one spray hole includes an inlet having a first cross-sectional shape and an outlet having a second cross-sectional shape different from the first cross-sectional shape. In other embodiments, the nozzle body has a first row of spray holes and a second row of spray holes, and a cross-sectional shape of spray holes in the first row is different from the cross-sectional shape of spray holes in the second row.
    Type: Application
    Filed: February 11, 2021
    Publication date: March 30, 2023
    Inventors: Srivathsan Ragunathan, Joshua R. Krems, Divakar Rajamohan, Karthik Ramisetty
  • Patent number: 9528432
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: December 27, 2016
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 9181905
    Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: November 10, 2015
    Assignee: Cummins Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 8783030
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: July 22, 2014
    Assignee: Cummins Inc.
    Inventors: John N Chi, John M Mulloy, Sriram S Popuri, Timothy R Frazier, Martin T Books, Divakar Rajamohan, Indranil Brahma
  • Patent number: 8567192
    Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: October 29, 2013
    Assignee: Cummins, Inc.
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
  • Publication number: 20130074496
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20130074492
    Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
  • Publication number: 20130080034
    Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
  • Publication number: 20130074495
    Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma