Patents by Inventor Divya Israni

Divya Israni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230174612
    Abstract: The present disclosure generally relates to, inter alia, a new class of chimeric Notch receptors containing a synthetic zinc finger transcriptional effector (synZTE) module, engineered to modulate gene expression and cellular activities in a ligand-dependent manner. The new Notch receptors surprisingly retain the ability to transduce signals in response to ligand binding despite that the Notch extracellular subunit (NEC), which includes the negative regulatory region (NRR) previously believed to be essential for the functioning of Notch receptors, is partly or completely deleted. In addition, the synZTE is designed to bind orthogonal DNA target sequences in target organisms which in turn facilitates precise regulation of therapeutic gene expression with minimal off-target activity.
    Type: Application
    Filed: March 24, 2021
    Publication date: June 8, 2023
    Inventors: Kole T. ROYBAL, Iowis ZHU, Raymond LIU, Ahmad S. KHALIL, Divya ISRANI
  • Publication number: 20230159600
    Abstract: The technology described herein is directed to regulated synthetic gene expression systems. In one aspect described herein are synthetic transcription factors (synTFs) comprising a DNA binding domain, a transcriptional effector domain, and a regulator protein. In other aspects described herein are gene expression systems comprising said synTFs and methods of treating diseases and disorders using said synTFs.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 25, 2023
    Applicant: Trustees of Boston University
    Inventors: Ahmad S. KHALIL, Wilson Wai Chun Wong, Divya Israni, Huishan Li
  • Patent number: 11530246
    Abstract: The technology described herein is directed to regulated synthetic gene expression systems. In one aspect described herein are synthetic transcription factors (synTFs) comprising a DNA binding domain, a transcriptional effector domain, and a regulator protein. In other aspects described herein are gene expression systems comprising said synTFs and methods of treating diseases and disorders using said synTFs.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 20, 2022
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Ahmad S. Khalil, Wilson Wai Chun Wong, Divya Israni, Huishan Li
  • Publication number: 20220356225
    Abstract: The present disclosure generally relates to, inter alia, a new class of chimeric Notch receptors containing a synthetic zinc finger transcriptional effector (synZTE) module, engineered to modulate gene expression and cellular activities in a ligand-dependent manner. The new Notch receptors surprisingly retain the ability to transduce signals in response to ligand binding despite that the Notch extracellular subunit, which includes the negative regulatory region previously believed to be essential for the functioning of Notch receptors, is partly or completely deleted. In addition, the synZTE is designed to bind orthogonal DNA target sequences in target organisms which in turn facilitates precise regulation of therapeutic gene expression with minimal off-target activity.
    Type: Application
    Filed: September 23, 2020
    Publication date: November 10, 2022
    Inventors: Kole T. ROYBAL, Iowis ZHU, Raymond LIU, Ahmad S. KHALIL, Divya ISRANI
  • Publication number: 20200377564
    Abstract: The technology described herein is directed to regulated synthetic gene expression systems. In one aspect described herein are synthetic transcription factors (synTFs) comprising a DNA binding domain, a transcriptional effector domain, and a regulator protein. In other aspects described herein are gene expression systems comprising said synTFs and methods of treating diseases and disorders using said synTFs.
    Type: Application
    Filed: May 15, 2020
    Publication date: December 3, 2020
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Ahmad S. KHALIL, Wilson Wai Chun WONG, Divya ISRANI, Huishan LI
  • Patent number: 10138493
    Abstract: Embodiments disclosed herein provide artificial expression systems comprising the zinc-finger containing transcription factors and engineered promoters to modulate expression of genes of interest. Engineered zinc-finger transcription factors that interact with engineered promoters constitute synthetic and regulatable expression systems which facilitate the modulation of gene expression as desired.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: November 27, 2018
    Assignees: TRUSTEES OF BOSTON UNIVERSITY, THE GENERAL HOSPITAL CORPORATION
    Inventors: Ahmad S. Khalil, Divya Israni, Minhee Park, J. Keith Joung, Jeffry D. Sander
  • Publication number: 20180057838
    Abstract: Embodiments disclosed herein provide artificial expression systems comprising the zinc-finger containing transcription factors and engineered promoters to modulate expression of genes of interest. Engineered zinc-finger transcription factors that interact with engineered promoters constitute synthetic and regulatable expression systems which facilitate the modulation of gene expression as desired.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 1, 2018
    Applicants: TRUSTEES OF BOSTON UNIVERSITY, THE GENERAL HOSPITAL CORPORATION
    Inventors: Ahmad S. Khalil, Divya Israni, Minhee Park, J. Keith Joung, Jeffry D. Sander