Patents by Inventor Dmitri Litvinov

Dmitri Litvinov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240019398
    Abstract: A biosensor may provide a magnetoresistive (MR) film comprising a nonmagnetic layer may be sandwiched between the two ferromagnetic layers. The MR film may be positioned on a substrate, where the edges of the MR film are in contact with leads. The leads may be in contact with pads. The sensors may provide quasi-digital readout that enable greatly enhanced sensitivity. In some embodiments, biosensors may be arranged as array of sensors. The array of sensors may be arranged as a symmetric or asymmetric N1×N2 array, where N1 and N2 are integers, N1 represents the number of sensors linked together in series, and N2 represents the number of sensor sets in parallel, where each sensor set may comprise one or more sensors. Further, the array of sensors may be coupled to a voltmeter, which may be a single voltmeter in that allows the sensors to all be probed simultaneously.
    Type: Application
    Filed: September 25, 2023
    Publication date: January 18, 2024
    Applicant: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Dmitri Litvinov, Long Chang, Richard Willson
  • Patent number: 11821818
    Abstract: A biosensor may provide a magnetoresistive (MR) film comprising a nonmagnetic layer may be sandwiched between the two ferromagnetic layers. The MR film may be positioned on a substrate, where the edges of the MR film are in contact with leads. Additionally, the leads may be in contact with pads. The sensors may provide quasi-digital readout that enable greatly enhanced sensitivity. In some embodiments, biosensors may be arranged as array of sensors. The array of sensors may be arranged as a symmetric or asymmetric N1×N2 array, where N1 and N2 are integers, N1 represents the number of sensors linked together in series, and N2 represents the number of sensor sets in parallel, where each sensor set may comprise one or more sensors. Further, the array of sensors may be coupled to a voltmeter, which may be a single voltmeter in some cases that allows the sensors to all be probed simultaneously.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: November 21, 2023
    Assignee: University of Houston System
    Inventors: Dmitri Litvinov, Long Chang, Richard Willson
  • Patent number: 11366050
    Abstract: The invention is a novel and non-obvious design and implementation of an inductive sensor for quantifying magnetic particles. The invention parts way from the conventional methods of using wounded coils to a design that is compatible with an integrated circuit (IC) chip fabrication processes and/or printed circuit board (PCB) manufacturing. The increased accuracy from these fabrication methods provides a significant improvement to sensor sensitivity. In addition, the design of the inductive sensor enables easy integration with lateral flow assay (LFA) technology. The sensor can be applied to detect and quantify molecules to provide information on health, hazard or safety.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: June 21, 2022
    Inventors: Dmitri Litvinov, Long Van Chang, Mohammad Khodadadi, Richard Coale Willson
  • Publication number: 20200124569
    Abstract: A biosensor may provide a magnetoresistive (MR) film comprising a nonmagnetic layer may be sandwiched between the two ferromagnetic layers. The MR film may be positioned on a substrate, where the edges of the MR film are in contact with leads. Additionally, the leads may be in contact with pads. The sensors may provide quasi-digital readout that enable greatly enhanced sensitivity. In some embodiments, biosensors may be arranged as array of sensors. The array of sensors may be arranged as a symmetric or asymmetric N1×N2 array, where N1 and N2 are integers, N1 represents the number of sensors linked together in series, and N2 represents the number of sensor sets in parallel, where each sensor set may comprise one or more sensors. Further, the array of sensors may be coupled to a voltmeter, which may be a single voltmeter in some cases that allows the sensors to all be probed simultaneously.
    Type: Application
    Filed: July 6, 2018
    Publication date: April 23, 2020
    Applicant: University of Houston System
    Inventors: Dmitri Litvinov, Long Chang, Richard Willson
  • Patent number: 9818535
    Abstract: In the systems and methods for synthesizing a thin film with desired properties (e.g. magnetic, conductivity, photocatalyst, etc.), a metal oxide film may be deposited on a substrate. The metal oxide film may be achieved utilizing any suitable method. A reducing agent may be deposited before, after or both before and after the metal oxide layer. Oxygen may be removed or liberated from the deposited metal oxide film by low temperature local or global annealing. As a result of the annealing to remove oxygen, one or more portions of the metal oxide may be transformed into materials with desired properties. As a nonlimiting example, a metal oxide film may be treated to provide a magnetic multilayer film that is suitable for bit patterned media.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: November 14, 2017
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventors: Dmitri Litvinov, Long Chang
  • Patent number: 9733315
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: August 15, 2017
    Assignee: UNIVERSITY OF HOUSTON
    Inventors: Dmitri Litvinov, Richard Willson
  • Patent number: 9653104
    Abstract: Embodiments of the present disclosure provide a method for selective removal of atoms from a substrate. Such a method comprises forming a patterned mask over at least a portion of the surface of the substrate to form a masked portion and an unmasked portion of the surface. In an embodiment, the method comprises exposing the surface to low energy light ions. In a related embodiment the low energy light ions selectively remove atoms from the unmasked portion of the substrate. In some embodiments, the method further comprises removing the mask. In another embodiment, the present disclosure relates to a method of creating a plurality of magnetic domains on a magnetically susceptible substrate. In an embodiment, the present disclosure pertains to a method of forming a magnetic medium.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: May 16, 2017
    Assignee: UNIVERSITY OF HOUSTON
    Inventors: Dmitri Litvinov, Long Chang
  • Publication number: 20170097392
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Application
    Filed: February 8, 2013
    Publication date: April 6, 2017
    Applicant: University of Houston
    Inventors: Dmitri Litvinov, Richard Willson
  • Publication number: 20150194261
    Abstract: In the systems and methods for synthesizing a thin film with desired properties (e.g. magnetic, conductivity, photocatalyst, etc.), a metal oxide film may be deposited on a substrate. The metal oxide film may be achieved utilizing any suitable method. A reducing agent may be deposited before, after or both before and after the metal oxide layer. Oxygen may be removed or liberated from the deposited metal oxide film by low temperature local or global annealing. As a result of the annealing to remove oxygen, one or more portions of the metal oxide may be transformed into materials with desired properties. As a nonlimiting example, a metal oxide film may be treated to provide a magnetic multilayer film that is suitable for bit patterned media.
    Type: Application
    Filed: January 8, 2015
    Publication date: July 9, 2015
    Applicant: University of Houston System
    Inventors: Dmitri Litvinov, Long Chang
  • Publication number: 20140228227
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: University of Houston
    Inventors: Dmitri Litvinov, Richard Willson
  • Publication number: 20140144874
    Abstract: Embodiments of the present disclosure provide a method for selective removal of atoms from a substrate. Such a method comprises forming a patterned mask over at least a portion of the surface of the substrate to form a masked portion and an unmasked portion of the surface. In an embodiment, the method comprises exposing the surface to low energy light ions. In a related embodiment the low energy light ions selectively remove atoms from the unmasked portion of the substrate. In some embodiments, the method further comprises removing the mask. In another embodiment, the present disclosure relates to a method of creating a plurality of magnetic domains on a magnetically susceptible substrate. In an embodiment, the present disclosure pertains to a method of forming a magnetic medium.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 29, 2014
    Applicant: University of Houston
    Inventors: Dmitri Litvinov, Long Chang
  • Patent number: 8456157
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: June 4, 2013
    Assignee: University of Houston
    Inventors: Dmitri Litvinov, Richard Willson
  • Publication number: 20100188075
    Abstract: A biomolecular sensor system includes an array of magnetoresistive nanosensors designed for sensing biomolecule-conjugated superparamagnetic nanoparticles. Materials and geometry of each sensor element are designed for optimized sensitivity. The system includes magnetic field generators to apply forces to superparamagnetic nanoparticles for 1) nanoparticle manipulation, 2) sensor magnetic biasing, 3) magnetic pull-off measurement for differentiation against non-specific association, and 4) removal of all particles from the sensor array surface.
    Type: Application
    Filed: July 26, 2006
    Publication date: July 29, 2010
    Inventors: Dmitri Litvinov, Richard Wilson
  • Patent number: 7038882
    Abstract: A write pole for a magnetic recording head, such as a perpendicular magnetic recording head, includes a first magnetic layer comprising a material having a first saturation magnetic moment and a second magnetic layer adjacent the first magnetic layer wherein the second magnetic layer comprises a material having a second saturation magnetic moment that is greater than the first saturation magnetic moment. The write pole also comprises a non-magnetic layer between a portion of the first magnetic layer and the second magnetic layer. The non-magnetic layer may be formed between the first magnetic layer and the second magnetic layer adjacent an air-bearing surface of the recording head. A disc drive storage system having a recording head with means for reducing skew sensitivity of the recording head is also disclosed.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: May 2, 2006
    Assignee: Seagate Technology
    Inventors: Billy W. Crue, Erik Svedberg, Robert Rottmayer, Dmitri Litvinov, Sakhrat Khizroev
  • Patent number: 6987637
    Abstract: A perpendicular magnetic recording system is provided which eliminates unwanted side writing to adjacent recording tracks due to the skew angle effect. The system includes a perpendicular magnetic recording head with a write pole that is used to sequentially write to adjacent tracks of a magnetic recording disk. In one embodiment, the write pole is aligned at a compensation angle with respect to the recording tracks which remains greater than zero as the recording head travels in an arc across the disk. When the recording head moves radially inwardly or outwardly across the tracks of the disk, the compensation angle remains greater than zero. Any side writing by the write pole to adjacent tracks is eliminated as the write pole sequentially writes to the next adjacent track. By eliminating the skew angle effect, smaller spacings may be provided between adjacent tracks, thereby increasing data storage densities.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: January 17, 2006
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev, Roy Wallace Gustafson
  • Patent number: 6898053
    Abstract: A perpendicular recording head for use with magnetic recording media includes an unusually thin main pole. The main pole is made by depositing magnetically permeable material on a nonmagnetic substrate. The main pole is then magnetically coupled with an opposing pole so that the deposited magnetically permeable material is oriented parallel to the recording head's direction of travel.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: May 24, 2005
    Assignee: Seagate Technology LLC
    Inventors: Sakhrat Khizroev, Dmitri Litvinov, Bill Crue, Nurul Amin, Robert Earl Rottmayer
  • Patent number: 6888700
    Abstract: A perpendicular magnetic recording head for improving resolution includes a read element and a magnetic flux generating element spaced apart from the read element. The magnetic flux generating element transmits a magnetic flux into a soft magnetic underlayer of a magnetic recording medium adjacent an air-bearing surface of the magnetic flux generating element. The magnetic flux transmitted to the soft magnetic underlayer flows in the soft magnetic underlayer away from an area of the soft magnetic underlayer beneath the read element.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: May 3, 2005
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev
  • Patent number: 6884328
    Abstract: Magnetic films are annealed by radio frequency (RF) radiation. During the RF annealing process, the layers may be subjected to a magnetic field in order to control their anisotropy axes. The RF annealed layers are useful for applications such as longitudinal and perpendicular magnetic recording layers of magnetic data storage media.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: April 26, 2005
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Nisha Shukla, Erik Bjorn Svedberg, Sakhrat Khizroev, Dieter K. Weller
  • Patent number: 6876518
    Abstract: A perpendicular magnetic recording head having an air bearing surface and comprising a substantially planar top pole and a shared pole is disclosed. The top pole and shared pole are connected distally from the air bearing surface by a yoke. A conductive coil wraps around the top pole and is positioned adjacent to the air bearing surface, with a lower portion of the coils extending between the top pole and the shared pole.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: April 5, 2005
    Assignee: Seagate Technology LLC
    Inventors: Sakhrat Khizroev, Dmitri Litvinov, Billy Wayne Crue
  • Patent number: 6876519
    Abstract: A perpendicular recording head (10) for use with magnetic recording media (30) includes a main pole (14) and a magnetic field source which is positioned sufficiently close to the main pole tip to generate a background magnetic field in the recording media. A conductive magnetizing coil (20) surrounding the main pole is preferably used as the magnetic field source. The background magnetic field generated by the magnetizing coil effectively reduces the coercivity of the magnetic recording media in the region affected by the background field. The recording head enables writing on high coercivity/high anisotropy magnetic media, thereby achieving extremely high recording densities.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: April 5, 2005
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev