Patents by Inventor Dmitry A. Markov

Dmitry A. Markov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10023832
    Abstract: The invention relates to a system of fluidic valves and pumps and associated fluidic channels integratable into a bio-object microfluidics module. The module includes input and output buses; upstream and downstream interconnection bus control valves (CVs) coupled to the input and output buses, respectively. It may include arterial, venous, wash and waste bus lines, each connecting between the upstream and downstream interconnection bus CVs. It may also include an input CV connecting to the arterial bus line, upstream interconnection bus CV, bio-object and inlets, and an output CV connecting to the bio-object, input CV, downstream interconnection bus CV and outlets; and a pump connecting between the input CV and bio-object. The system can be arranged to provide MicroFormulator functionality enabling precise mixtures of drugs, chemicals, or biochemicals to be delivered in a time-dependent fashion to biological entities housed in individual wells or chambers.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: July 17, 2018
    Assignee: VANDERBILT UNIVERSITY
    Inventors: John P. Wikswo, Dmitry A. Markov, Philip C. Samson, Frank E. Block, III, David K. Schaffer, Ronald S. Reiserer
  • Publication number: 20180080570
    Abstract: A rotary planar peristaltic micropump (RPPM) includes an actuator having a shaft engaged with a motor such that activation of the motor causes the shaft to rotate, and a bearing assembly engaged with the shaft. The bearing assembly has a bearing cage defining a plurality of spaced-apart openings thereon, and a plurality of rolling-members accommodated in the plurality of spaced-apart openings of the bearing cage, such that when the shaft rotates, the plurality of rolling-members of the bearing assembly rolls along a circular path. The RPPM also includes a fluidic path in fluidic communication with first and second ports. The fluidic path is positioned under the actuator and coincident with the circular path, such that when the shaft of the actuator rotates, the plurality of rolling-members of the bearing assembly rolls along the fluidic path to cause a fluid to transfer between the first and second ports.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Frank E. Block, III, Philip C. Samson, Erik M. Werner, Dmitry A. Markov, Ronald S. Reiserer, Jennifer R. Mckenzie, David E. Cliffel, William J. Matloff, Frank E. Block, JR., Joseph R. Scherrer, W. Hunter Tidwell, John P. Wikswo
  • Patent number: 9874285
    Abstract: A platform for cultivation, maintenance, and/or analysis of one or more bio-objects includes one or more integrated bio-object microfluidics modules. Each integrated bio-object microfluidics module is configured to cultivate, maintain, analyze and/or mimic functionalities of a respective bio-object, and includes one or more on-chip pumps; a plurality of fluidic switches; and a microfluidic chip in fluid communication with the one or more on-chip pumps and the plurality of fluidic switches, having at least one chamber for accommodating the bio-object and a plurality of fluidic paths connecting the at least one chamber, the one or more on-chip pumps and the plurality of fluidic switches, and a power and control unit adapted for selectively and individually controlling the one or more on-chip pumps and the plurality of fluidic switches for performing bio-object microfluidics functions.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: January 23, 2018
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Frank E. Block, III, Philip C. Samson, Erik M. Werner, Dmitry A. Markov, Ronald S. Reiserer, Jennifer R. Mckenzie, David E. Cliffel, William J. Matloff, Frank E. Block, Jr., Joseph R. Scherrer, W. Hunter Tidwell, John P. Wikswo
  • Patent number: 9725687
    Abstract: The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: August 8, 2017
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, VANDERBILT UNIVERSITY
    Inventors: John P. Wikswo, Philip C. Samson, Frank Emmanuel Block, III, Ronald S. Reiserer, Kevin Kit Parker, John A. McLean, Lisa Joy McCawley, Dmitry Markov, Daniel Levner, Donald E. Ingber, Geraldine A. Hamilton, Josue A. Goss, Robert Cunningham, David E. Cliffel, Jennifer Robin McKenzie, Anthony Bahinski, Christopher David Hinojosa
  • Publication number: 20170081625
    Abstract: The invention relates to a system of fluidic valves and pumps and associated fluidic channels integratable into a bio-object microfluidics module. The module can include input and output buses; upstream and downstream interconnection bus control valves (CVs) coupled to the input and output buses, respectively. It may include arterial, venous, wash and waste bus lines, each connecting between the upstream and downstream interconnection bus CVs. It may also include an input CV connecting to the arterial bus line, upstream interconnection bus CV, bio-object and inlets, and an output CV connecting to the bio-object, input CV, downstream interconnection bus CV and outlets; and a pump connecting between the input CV and bio-object. The system of fluidic valves and pumps can be arranged to provide MicroFormulator functionality enabling precise mixtures of drugs, chemicals, or biochemicals to be delivered in a time-dependent fashion to biological entities housed in individual wells or chambers.
    Type: Application
    Filed: June 23, 2016
    Publication date: March 23, 2017
    Inventors: John P. Wikswo, Dmitry A. Markov, Philip C. Samson, Frank E. Block, III, David K. Schaffer, Ronald S. Reiserer
  • Publication number: 20150298123
    Abstract: A platform for cultivation, maintenance, and/or analysis of one or more bio-objects includes one or more integrated bio-object microfluidics modules. Each integrated bio-object microfluidics module is configured to cultivate, maintain, analyze and/or mimic functionalities of a respective bio-object, and includes one or more on-chip pumps; a plurality of fluidic switches; and a microfluidic chip in fluid communication with the one or more on-chip pumps and the plurality of fluidic switches, having at least one chamber for accommodating the bio-object and a plurality of fluidic paths connecting the at least one chamber, the one or more on-chip pumps and the plurality of fluidic switches, and a power and control unit adapted for selectively and individually controlling the one or more on-chip pumps and the plurality of fluidic switches for performing bio-object microfluidics functions.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 22, 2015
    Inventors: Frank E. Block, III, Philip C. Samson, Erik M. Werner, Dmitry A. Markov, Ronald S. Reiserer, Jennifer R. Mckenzie, David E. Cliffel, William J. Matloff, Frank E. Block, Joseph R. Scherrer, W. Hunter Tidwell, John P. Wikswo
  • Publication number: 20150004077
    Abstract: The invention provides integrated Organ-on-Chip microphysiological systems representations of living Organs and support structures for such microphysiological systems.
    Type: Application
    Filed: December 10, 2012
    Publication date: January 1, 2015
    Inventors: John P. Wikswo, Philip C. Samson, Frank Emmanuel Block, III, Ronald S. Reiserer, Kevin Kit Parker, John A. McLean, Lisa Joy McCawley, Dmitry Markov, Daniel Levner, Donald E. Ingber, Geraldine A. Hamilton, Josue A. Goss, Robert Cunningham, David E. Cliffel, Jennifer Robin McKenzie, Anthony Bahinski, Christopher David Hinojosa
  • Publication number: 20140356849
    Abstract: In one aspect of the invention, an integrated bio-object microfluidics chip includes a fluidic network having a plurality of inlets for providing a plurality of fluids, a plurality of outlets, a bio-object chamber for accommodating at least one bio-object, a plurality of fluidic switches, and one or more pumps, coupled to each other such that at least one fluidic switch operably and selectively receives one fluid from a corresponding inlet and routes the received fluid, through the one or more pumps, to the bio-object chamber so as to perfuse the at least one bio-object therein, and one of the downstream fluidic switches selectively delivers an effluent of the at least one bio-object responsive to the perfusion to a predetermined outlet destination, or to the at least one fluidic switch for recirculation.
    Type: Application
    Filed: December 10, 2012
    Publication date: December 4, 2014
    Inventors: John P. Wikswo, David E. Cliffel, Dmitry A. Markov, John A. McLean, Lisa Joy McCawley, Phillip C. Samson, Ronald S. Reiserer, Frank Emmanuel Block, Jennifer Robin McKenzie
  • Patent number: 8339704
    Abstract: A micro-mirror well. In one embodiment the micro-mirror well includes a plurality of planar mirrors arranged around an axis of symmetry and inclined to form a pyramid well, where each of the plurality of planar mirrors is capable of reflecting light emitting from an object of interest placed inside the pyramid well.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 25, 2012
    Assignee: Vanderbilt University
    Inventors: Kevin T. Seale, Ronald S. Reiserer, John P. Wikswo, Sandra Rosenthal, Jeffrey Chamberlain, Charles Wright, Dmitry Markov, Chris Janetopoulos
  • Publication number: 20110058252
    Abstract: A bottomless micro-mirror well. In one embodiment, the bottomless micro-mirror well includes a substrate having a first surface and an opposite, second surface defining a body portion between the first surface and the opposite, second surface, where the body portion defines an inverted pyramidal well having at least three side surfaces extending to each other and defining an opening between a first sidewall and a second sidewall of the body portion, and where each of the at least three side surfaces is configured to reflect light emitting from an object of interest.
    Type: Application
    Filed: May 26, 2010
    Publication date: March 10, 2011
    Applicant: VANDERBILT UNIVERSITY
    Inventors: Chris Janetopoulos, Dmitry Markov, Ronald S. Reiserer, Kevin T. Seale, John P. Wikswo, Charles Wright
  • Patent number: 6809828
    Abstract: An on-chip interferometric backscatter detector (OCIBD) makes use of plastic substrates in which a rectangular sample channel is formed. While any plastic material can be used to form the channel substrate, the substrate is most preferably formed from polydimethylsiloxane (PDMS). An incident laser beam reflects off of the sample channel walls and through the sample in the channel, thereby generating backscattered reflections that create interference fringe patterns. The fringe patterns are detected by a photodetector and used to determine various properties of the sample. To provide the best results, the laser beam diameter should be no smaller than the channel width so that the entire channel will be illuminated by the beam, and preferably should be slightly, e.g., 5%, larger. This will insure that the laser light reflected off of the walls of the channel will generate the desired interference fringe patterns, despite the less than optimum rectangular geometry of the channel walls.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: October 26, 2004
    Assignee: Texas Tech University
    Inventors: Darryl J. Bornhop, Kelly Swinney, Dmitry Markov
  • Publication number: 20020135772
    Abstract: An on-chip interferometric backscatter detector (OCIBD) makes use of plastic substrates in which a rectangular sample channel is formed. While any plastic material can be used to form the channel substrate, the substrate is most preferably formed from polydimethylsiloxane (PDMS). An incident laser beam reflects off of the sample channel walls and through the sample in the channel, thereby generating backscattered reflections that create interference fringe patterns. The fringe patterns are detected by a photodetector and used to determine various properties of the sample. To provide the best results, the laser beam diameter should be no smaller than the channel width so that the entire channel will be illuminated by the beam, and preferably should be slightly, e.g., 5%, larger. This will insure that the laser light reflected off of the walls of the channel will generate the desired interference fringe patterns, despite the less than optimum rectangular geometry of the channel walls.
    Type: Application
    Filed: January 24, 2002
    Publication date: September 26, 2002
    Inventors: Darryl J. Bornhop, Kelly Swinney, Dmitry Markov
  • Patent number: 6381025
    Abstract: An optical detection scheme for on-chip, high sensitivity refractive index detection is based on micro-interferometry, and allows for picoliter detection volumes and universal analyte sensitivity. The invention employs three main elements: a source of coherent light, such as a VCSEL, laser diode or He—Ne laser; an etched channel of capillary dimensions in a substrate for reception of a sample to be analyzed; and a photodetector for detecting laser light reflected off of the channel. The laser source generates an unfocused laser beam that is incident on the etched channel. A unique multi-pass optical configuration is inherently created by the channel characteristics, and is based on the interaction of the unfocused laser beam and the curved surface of the channel, that allows RI measurements in small volumes at high sensitivity. The entire device, including the laser and the photodetector can be formed on a single microchip.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: April 30, 2002
    Assignee: Texas Tech University
    Inventors: Darryl J. Bornhop, Kelly Swinney, Dmitry Markov