Patents by Inventor Dmitry Lyakhov

Dmitry Lyakhov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10767208
    Abstract: The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: September 8, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Norman C. Nelson, Jijumon Chelliserry, Steven T. Brentano, Dmitry Lyakhov, Matthew C. Friedenberg, Anne-Laure Shapiro
  • Patent number: 10752944
    Abstract: The invention provides methods of forming a circular template for sequencing a target nucleic acid. The circular template is generated by amplification of a segment of the target nucleic acid with chimeric primers with complementary 5? ends. The circular template has a single nick or gap providing a site for initiation of template-directed extension for sequence analysis. Sequencing of a single template generates reads of alternating segments of the same strand of the target nucleic spaced by primer segments. The different reads of the same strand of the target nucleic acid can be compiled to generate a consensus sequence. Because only one strand of the target nucleic acid is sequenced per reaction, the present method avoids errors introduced by unwittingly combining sequences of both strands of a heteroduplex PCR product.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: August 25, 2020
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Matthew C. Friedenberg, Anne-Laure Shapiro
  • Patent number: 10724085
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: July 28, 2020
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Norman C. Nelson, James D. Carlson, Michael M. Becker, Lyle J. Arnold, Jr.
  • Patent number: 10415092
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: September 17, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Michael M. Becker
  • Patent number: 10407723
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: September 10, 2019
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Michael M. Becker
  • Patent number: 10119163
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: November 6, 2018
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Norman C. Nelson, James D. Carlson, Michael M. Becker, Lyle J. Arnold, Jr.
  • Publication number: 20180208981
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Application
    Filed: February 22, 2018
    Publication date: July 26, 2018
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, Norman C. NELSON, James D. CARLSON, Michael M. BECKER, Lyle J. ARNOLD, JR.
  • Publication number: 20170342491
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Application
    Filed: May 15, 2017
    Publication date: November 30, 2017
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, James D. CARLSON, Norman C. NELSON, Lyle J. ARNOLD, Michael M. BECKER
  • Publication number: 20170321273
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Application
    Filed: January 27, 2017
    Publication date: November 9, 2017
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, James D. CARLSON, Norman C. NELSON, Lyle J. ARNOLD, Michael M. BECKER
  • Patent number: 9677135
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: June 13, 2017
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Jr., Michael M. Becker
  • Publication number: 20160348162
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Application
    Filed: March 2, 2016
    Publication date: December 1, 2016
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, Norman C. NELSON, James D. CARLSON, Michael M. BECKER, Lyle J. ARNOLD, Jr.
  • Patent number: 9399796
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: July 26, 2016
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Norman C. Nelson, James D. Carlson, Michael M. Becker, Lyle J. Arnold, Jr.
  • Patent number: 9169512
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 27, 2015
    Assignee: Gen-Probe Incorporated
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Michael M. Becker, Norman C. Nelson, Lyle J. Arnold, Jr.
  • Publication number: 20140378318
    Abstract: The invention provides methods of forming a circular template for sequencing a target nucleic acid. The circular template is generated by amplification of a segment of the target nucleic acid with chimeric primers with complementary 5? ends. The circular template has a single nick or gap providing a site for initiation of template-directed extension for sequence analysis. Sequencing of a single template generates reads of alternating segments of the same strand of the target nucleic spaced by primer segments. The different reads of the same strand of the target nucleic acid can be compiled to generate a consensus sequence. Because only one strand of the target nucleic acid is sequenced per reaction, the present method avoids errors introduced by unwittingly combining sequences of both strands of a heteroduplex PCR product.
    Type: Application
    Filed: September 6, 2012
    Publication date: December 25, 2014
    Applicant: GEN-PROBE INCORPORATED
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Matthew C. Friedenberg, Anne-Laure Shapiro
  • Publication number: 20140329282
    Abstract: The invention provides compositions and methods for making closed nucleic acid structures in which one or both strands are continuous. The closed nucleic acid structures can be used as sequencing templates among other applications.
    Type: Application
    Filed: September 6, 2012
    Publication date: November 6, 2014
    Applicant: GEN-PROBE INCORPORATED
    Inventors: Norman C. Nelson, Jijumon Chelliserry, Steven T. Brentano, Dmitry Lyakhov, Matthew C. Friedenberg, Anne-Laure Shapiro
  • Publication number: 20140127700
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Application
    Filed: December 17, 2013
    Publication date: May 8, 2014
    Applicant: GEN-PROBE INCORPORATED
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, James D. CARLSON, Norman C. NELSON, Lyle J. ARNOLD, JR., Michael M. BECKER
  • Patent number: 8642268
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: February 4, 2014
    Assignee: Gen-Probe Incorporated
    Inventors: Steven T. Brentano, Dmitry Lyakhov, James D. Carlson, Norman C. Nelson, Lyle J. Arnold, Jr., Michael M. Becker
  • Publication number: 20130309673
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 21, 2013
    Applicant: Gen-Probe Incorporated
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, Norman C. NELSON, James D. CARLSON, Michael M. BECKER, Lyle J. ARNOLD, JR.
  • Patent number: 8512955
    Abstract: Compositions, reaction mixtures, and methods for performing an amplification reaction, including multiplex amplification reaction, wherein the method comprises using one or more amplification oligomer complexes comprising linked first and second amplification oligomer members. In one aspect, the amplification oligomer complex is hybridized to a target nucleic acid, the target nucleic acid with hybridized amplification oligomer complex is then captured, and other components are washed away. Target sequences of the target nucleic acids are pre-amplified to generate a first amplification product. The first amplification product is amplified in one or more secondary amplification reactions to generate second amplification products.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: August 20, 2013
    Assignee: Gen-Probe Incorporated
    Inventors: Steven T. Brentano, Dmitry Lyakhov, Norman C. Nelson, James D. Carlson, Michael M. Becker, Lyle J. Arnold, Jr.
  • Publication number: 20120264122
    Abstract: Compositions that are used in nucleic acid amplification in vitro are disclosed, which include a target specific universal (TSU) promoter primer or promoter provider oligonucleotide that includes a target specific (TS) sequence that hybridizes specifically to a target sequence that is amplified and a universal (U) sequence that is introduced into the sequence that is amplified, by using a primer for the universal sequence. Methods of nucleic acid amplification in vitro are disclosed that use one or more TSU oligonucleotides to attached a U sequence to a target nucleic acid in a target capture step and then use a primer for a U sequence in subsequent amplification steps performed in substantially isothermal conditions to make amplification products that contain a U sequence that indicates the presence of the target nucleic acid in a sample.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 18, 2012
    Applicant: GEN-PROBE INCORPORATED
    Inventors: Steven T. BRENTANO, Dmitry LYAKHOV, James D. CARLSON, Norman C. NELSON, Lyle J. ARNOLD, JR.