Patents by Inventor Dmitry Pikulin

Dmitry Pikulin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240030328
    Abstract: Quantum devices formed from a single superconducting wire having a configurable ground connection are described. An example quantum device, configurable to be grounded, comprises a single superconducting wire having at least a first section and a second section, each of which is configurable to be in a topological phase and at least a third section configurable to be in a trivial phase. The quantum device further comprises semiconducting regions formed adjacent to the single superconducting wire, where the single superconducting wire is configurable to store quantum information in at least four Majorana zero modes (MZMs). The semiconducting regions formed adjacent to the single superconducting wire may be used to measure quantum information stored in the at least four MZMs.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Inventors: Christina Paulsen KNAPP, Roman Bela BAUER, Torsten KARZIG, Jonne Verneri KOSKI, Roman Mykolayovych LUTCHYN, Dmitry PIKULIN
  • Patent number: 11808796
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes (a) measuring one or both of a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction, to obtain mapping data and refinement data; (b) finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; and (c) finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: November 7, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Mason L Thomas, Chetan Vasudeo Nayak, Roman Mykolayovych Lutchyn, Bas Nijholt, Bernard Van Heck, Esteban Adrian Martinez, Georg Wolfgang Winkler, Gijsbertus De Lange, John David Watson, Sebastian Heedt, Torsten Karzig
  • Patent number: 11707000
    Abstract: A quantum device is fabricated by forming a network of nanowires oriented in a plane of a substrate to produce a Majorana-based topological qubit. The nanowires are formed from combinations of selective-area-grown semiconductor material along with regions of a superconducting material. The selective-area-grown semiconductor material is grown by etching trenches to define the nanowires and depositing the semiconductor material in the trenches. A side gate is formed in an etched trench and situated to control a topological segment of the qubit.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 18, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Michael H. Freedman, Roman Lutchyn, Peter Krogstrup Jeppesen, Parsa Bonderson
  • Publication number: 20230038763
    Abstract: Examples described in this disclosure relate to gating a semiconductor layer into a quantum spin Hall insulator state, Certain examples further relate to using quantum spin Hall insulators as topological quantum qubits. Quantum spin Hall systems may rely upon the quantum spin Hall effect by causing a state of a matter to change from a certain phase to an inverted bandgap phase. In one example, the present disclosure relates to a device including a semiconductor layer comprising an active material. The device further includes a gate coupled to the semiconductor layer, where the semiconductor layer is operable in a quantum spin Hall insulator state by using electrons and holes from the active material in response to an application of an electric field to the semiconductor layer via the gate.
    Type: Application
    Filed: August 6, 2021
    Publication date: February 9, 2023
    Inventors: Dmitry PIKULIN, Georg Wolfgang WINKLER, Rafal Maciej RECHCINSKI, Dominik André GRESCH
  • Publication number: 20220299551
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes (a) measuring one or both of a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction and a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction, to obtain mapping data and refinement data; (b) finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; and (c) finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Application
    Filed: February 15, 2022
    Publication date: September 22, 2022
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry PIKULIN, Mason L THOMAS, Chetan Vasudeo NAYAK, Roman Mykolayovych LUTCHYN, Bas NIJHOLT, Bernard VAN HECK, Esteban Adrian MARTINEZ, Georg Wolfgang WINKLER, Gijsbertus DE LANGE, John David WATSON, Sebastian HEEDT, Torsten KARZIG
  • Patent number: 11151470
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes measuring a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction to obtain mapping data; finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; measuring a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction in each of the one or more regions of the parameter space, to obtain refinement data; and finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: October 19, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Mason L Thomas, Chetan Vasudeo Nayak, Roman Mykolayovych Lutchyn, Georg Wolfgang Winkler, Sebastian Heedt, Gijsbertus De Lange, Bernard Van Heck, Esteban Adrian Martinez, Lucas Casparis, Torsten Karzig
  • Publication number: 20210279626
    Abstract: A method to evaluate a semiconductor-superconductor heterojunction for use in a qubit register of a topological quantum computer includes measuring a radio-frequency (RF) junction admittance of the semiconductor-superconductor heterojunction to obtain mapping data; finding by analysis of the mapping data one or more regions of a parameter space consistent with an unbroken topological phase of the semiconductor-superconductor heterojunction; measuring a sub-RF conductance including a non-local conductance of the semiconductor-superconductor heterojunction in each of the one or more regions of the parameter space, to obtain refinement data; and finding by analysis of the refinement data a boundary of the unbroken topological phase in the parameter space and a topological gap of the semiconductor-superconductor heterojunction for at least one of the one or more regions of the parameter space.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 9, 2021
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry PIKULIN, Mason L THOMAS, Chetan Vasudeo NAYAK, Roman Mykolayovych LUTCHYN, Georg Wolfgang WINKLER, Sebastian HEEDT, Gijsbertus DE LANGE, Bernard VAN HECK, Esteban Adrian MARTINEZ, Lucas CASPARIS, Torsten KARZIG
  • Publication number: 20200287120
    Abstract: The disclosure concerns fabricating a quantum device. In an embodiment, a method is disclosed comprising: providing a substrate and an insulator formed on the substrate; from combinations of selective-area-grown semiconductor material along with regions of a superconducting material, forming a network of nanowires oriented in a plane of the substrate which can be used to produce a Majorana-based topological qubit; and fabricating a side gate for controlling a topological segment of the qubit; wherein the selective-area-grown semiconductor material is grown on the substrate, by etching trenches in the insulator formed on the substrate to define the nanowires and depositing the semiconductor material in the trenches defining the nanowires; and wherein the fabricating of the side gate comprises etching the dielectric to create a trench for the side gate and depositing the side gate in the trench for the side gate.
    Type: Application
    Filed: June 27, 2018
    Publication date: September 10, 2020
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Dmitry Pikulin, Michael H. Freedman, Roman Lutchyn, Peter Krogstrup Jeppesen, Parsa Bonderson