Patents by Inventor Dmitry S. Sizov

Dmitry S. Sizov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418519
    Abstract: LEDs and methods of forming LEDs with various structural configurations to mitigate non-radiative recombination at the LED sidewalls are described. The various configurations described include combinations of LED sidewall surface diffusion with pillar structure, modulated doping profiles to form an n-p superlattice along the LED sidewalls, and selectively etched cladding layers to create entry points for shallow doping or regrowth layers.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 17, 2019
    Assignee: Apple Inc.
    Inventors: David P. Bour, Dmitry S. Sizov, Daniel A. Haeger, Xiaobin Xin
  • Publication number: 20190115495
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Application
    Filed: December 13, 2018
    Publication date: April 18, 2019
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Patent number: 10193013
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: January 29, 2019
    Assignee: Apple Inc.
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Publication number: 20180374991
    Abstract: LEDs and methods of forming LEDs with various structural configurations to mitigate non-radiative recombination at the LED sidewalls are described. The various configurations described include combinations of LED sidewall surface diffusion with pillar structure, modulated doping profiles to form an n-p superlattice along the LED sidewalls, and selectively etched cladding layers to create entry points for shallow doping or regrowth layers.
    Type: Application
    Filed: December 14, 2016
    Publication date: December 27, 2018
    Inventors: David P. BOUR, Dmitry S. SIZOV, Daniel A. HAEGER, Xiaobin XIN
  • Publication number: 20180292713
    Abstract: A display may have display layers that form an array of pixels. The display layers may include a first layer that includes a light-blocking matrix and a second layer that overlaps the first layer. The first layer may include quantum dot elements formed in openings in the light-blocking matrix. The light-blocking matrix may be formed from a reflective material such as metal. The second layer may include color filter elements that overlap corresponding quantum dot elements in the first layer. Substrate layers may be used to support the first and second layers and to support thin-film transistor circuitry that is used in controlling light transmission through the array of pixels. The display layers may include a liquid crystal layer, polarizer layers, filter layers for reflecting red and green light and/or other light to enhance light recycling, and layers with angularly dependent transmission characteristics.
    Type: Application
    Filed: August 31, 2017
    Publication date: October 11, 2018
    Inventors: Jean-Jacques P. Drolet, Yuan Chen, Jonathan S. Steckel, Ion Bita, Dmitry S. Sizov, Chia Hsuan Tai, John T. Leonard, Lai Wang, Ove Lyngnes, Xiaobin Xin, Zhibing Ge
  • Publication number: 20180219144
    Abstract: A light emitting structure including mixing cups are described. In an embodiment, a light emitting structure includes a light emitting diode (LED) bonded to a substrate, a diffuser layer adjacent the LED, an angular filter directly over the diffuser layer and the LED, and an overcoat layer directly over the angular filter and the LED.
    Type: Application
    Filed: December 14, 2017
    Publication date: August 2, 2018
    Inventors: James Michael Perkins, Sergei Y. Yakovenko, Dmitry S. Sizov
  • Publication number: 20180212097
    Abstract: Light emitting diodes re described. In an embodiment, an LED includes a graded p-side spacer layer on a p-type confinement layer, and the graded p-side spacer layer graded from an initial band gap adjacent the p-type confinement layer to a lower band gap. For example, the graded band gap may be achieved by a graded Aluminum concentration.
    Type: Application
    Filed: July 19, 2016
    Publication date: July 26, 2018
    Inventors: David P. BOUR, Dmitry S. SIZOV
  • Publication number: 20180097145
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Application
    Filed: November 30, 2017
    Publication date: April 5, 2018
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Patent number: 9865772
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: January 9, 2018
    Assignee: APPLE INC.
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Publication number: 20170170360
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Patent number: 9601659
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 21, 2017
    Assignee: Apple Inc.
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Publication number: 20160315218
    Abstract: LED structures are disclosed to reduce non-radiative sidewall recombination along sidewalls of vertical LEDs including p-n diode sidewalls that span a top current spreading layer, bottom current spreading layer, and active layer between the top current spreading layer and bottom current spreading layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: David P. Bour, Kelly McGroddy, Daniel Arthur Haeger, James Michael Perkins, Arpan Chakraborty, Jean-Jacques P. Drolet, Dmitry S. Sizov
  • Publication number: 20130044783
    Abstract: Light emitting devices are provided comprising an active region interposed between n-type and p-type sides of the device and a hole blocking layer interposed between the active region and the n-type side of the device. The active region comprises an active MQW structure and is configured for electrically-pumped stimulated emission of photons in the green portion of the optical spectrum. The n-type side of the light emitting device comprises an n-doped semiconductor region. The p-type side of the light emitting device comprises a p-doped semiconductor region. The n-doped semiconductor region comprises an n-doped non-polar or n-doped semi-polar substrate. Hole blocking layers according to the present disclosure comprise an n-doped semiconductor material and are interposed between the non-polar or semi-polar substrate and the active region of the light emitting device. The hole blocking layer (HBL) composition is characterized by a wider bandgap than that of the quantum well barrier layers of the active region.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 21, 2013
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah
  • Patent number: 8379684
    Abstract: Light emitting devices are provided comprising an active region interposed between n-type and p-type sides of the device and a hole blocking layer interposed between the active region and the n-type side of the device. The active region comprises an active MQW structure and is configured for electrically-pumped stimulated emission of photons in the green portion of the optical spectrum. The n-type side of the light emitting device comprises an n-doped semiconductor region. The p-type side of the light emitting device comprises a p-doped semiconductor region. The n-doped semiconductor region comprises an n-doped non-polar or n-doped semi-polar substrate. Hole blocking layers according to the present disclosure comprise an n-doped semiconductor material and are interposed between the non-polar or semi-polar substrate and the active region of the light emitting device. The hole blocking layer (HBL) composition is characterized by a wider bandgap than that of the quantum well barrier layers of the active region.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: February 19, 2013
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah
  • Patent number: 8358673
    Abstract: According to the concepts of the present disclosure, laser diode waveguide configurations are contemplated where the use of Al in the waveguide layers of the laser is presented in the form of InGaN/Al(In)GaN waveguiding superstructure comprising optical confining wells (InGaN) and strain compensating barriers (Al(In)GaN). The composition of the optical confining wells is chosen such that they provide strong optical confinement, even in the presence of the Al(In)GaN strain compensating barriers, but do not absorb lasing emission. The composition of the strain compensating barriers is chosen such that the Al(In)GaN exhibits tensile strain that compensates for the compressive strain of InGaN optical confinement wells but does not hinder the optical confinement.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: January 22, 2013
    Assignee: Corning Incorporated
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah
  • Publication number: 20120213240
    Abstract: According to the concepts of the present disclosure, laser diode waveguide configurations are contemplated where the use of Al in the waveguide layers of the laser is presented in the form of InGaN/Al(In)GaN waveguiding superstructure comprising optical confining wells (InGaN) and strain compensating barriers (Al(In)GaN). The composition of the optical confining wells is chosen such that they provide strong optical confinement, even in the presence of the Al(In)GaN strain compensating barriers, but do not absorb lasing emission. The composition of the strain compensating barriers is chosen such that the Al(In)GaN exhibits tensile strain that compensates for the compressive strain of InGaN optical confinement wells but does not hinder the optical confinement.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Inventors: Rajaram Bhat, Dmitry S. Sizov, Chung-En Zah