Patents by Inventor Dmitry Strusevich

Dmitry Strusevich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10451462
    Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: October 22, 2019
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker, Sergey Shatalin, Dmitry Strusevich
  • Patent number: 10345139
    Abstract: Embodiments of the present invention address aliasing problems by providing a plurality of discrete acoustic sensors along a cable whereby acoustic signals may be measured in situations where the fiber optic cable has not been secured to a structure or area by a series of clamps. Acoustic sampling points are achieved by selectively enhancing the acoustic coupling between the outer layer and the at least one optical fiber arrangement, such that acoustic energy may be transmitted selectively from the outer layer to the at least one optical fiber arrangement. The resulting regions of acoustic coupling along the cable allow the optical fiber to detect acoustic signals. Regions between the outer layer and the at least one optical fiber arrangement that contain material which is acoustically insulating further this enhancement since acoustic waves are unable to travel through such mediums, or at least travel through such mediums at a reduced rate.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: July 9, 2019
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Dmitry Strusevich, Sergey Shatalin, Tom Parker
  • Publication number: 20180245957
    Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
    Type: Application
    Filed: April 25, 2018
    Publication date: August 30, 2018
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker, Sergey Shatalin, Dmitry Strusevich
  • Patent number: 9989388
    Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: June 5, 2018
    Assignees: Silixa Ltd., Chevron U.S.A. Inc.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker, Sergey Shatalin, Dmitry Strusevich
  • Publication number: 20180058916
    Abstract: Embodiments of the present invention address aliasing problems by providing a plurality of discrete acoustic sensors along a cable whereby acoustic signals may be measured in situations where the fibre optic cable has not been secured to a structure or area by a series of clamps. Acoustic sampling points are achieved by selectively enhancing the acoustic coupling between the outer layer and the at least one optical fibre arrangement, such that acoustic energy may be transmitted selectively from the outer layer to the at least one optical fibre arrangement. The resulting regions of acoustic coupling along the cable allow the optical fibre to detect acoustic signals. Regions between the outer layer and the at least one optical fibre arrangement that contain material which is acoustically insulating further this enhancement since acoustic waves are unable to travel through such mediums, or at least travel through such mediums at a reduced rate.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 1, 2018
    Applicant: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Dmitry Strusevich, Sergey Shatalin, Tom Parker
  • Patent number: 9823114
    Abstract: Embodiments of the present invention address aliasing problems by providing a plurality of discrete acoustic sensors along a cable whereby acoustic signals may be measured in situations where the fiber optic cable has not been secured to a structure or area by a series of clamps, as described in the prior art. Acoustic sampling points are achieved by selectively enhancing the acoustic coupling between the outer layer and the at least one optical fiber arrangement, such that acoustic energy may be transmitted selectively from the outer layer to the at least one optical fiber arrangement. The resulting regions of acoustic coupling along the cable allow the optical fiber to detect acoustic signals. Regions between the outer layer and the at least one optical fiber arrangement that contain material which is acoustically insulating further this enhancement since acoustic waves are unable to travel through such mediums, or at least travel through such mediums at a reduced rate.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: November 21, 2017
    Assignee: Silixa Ltd.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Dmitry Strusevich, Sergey Shatalin, Tom Parker
  • Publication number: 20160258795
    Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
    Type: Application
    Filed: October 15, 2014
    Publication date: September 8, 2016
    Applicants: SILIXA LTD., SILIXA LTD.
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Veronique Mahue, Tom Parker, Sergey Shatalin, Dmitry Strusevich
  • Publication number: 20160223389
    Abstract: Embodiments of the present invention address aliasing problems by providing a plurality of discrete acoustic sensors along a cable whereby acoustic signals may be measured in situations where the fibre optic cable has not been secured to a structure or area by a series of clamps, as described in the prior art. Acoustic sampling points are achieved by selectively enhancing the acoustic coupling between the outer layer and the at least one optical fibre arrangement, such that acoustic energy may be transmitted selectively from the outer layer to the at least one optical fibre arrangement. The resulting regions of acoustic coupling along the cable allow the optical fibre to detect acoustic signals. Regions between the outer layer and the at least one optical fibre arrangement that contain material which is acoustically insulating further this enhancement since acoustic waves are unable to travel through such mediums, or at least travel through such mediums at a reduced rate.
    Type: Application
    Filed: September 4, 2014
    Publication date: August 4, 2016
    Inventors: Mahmoud Farhadiroushan, Daniel Finfer, Dmitry Strusevich, Sergey Shatalin, Tom Parker