Patents by Inventor Dmitry V. Kosynkin
Dmitry V. Kosynkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20170151548Abstract: Methods of sorption of various materials from an environment are disclosed herein. Embodiments of the materials include radioactive elements chlorates, perchlorates, organohalogens, and combinations thereof. Other embodiments pertain to methods of sorption of cationic radionuclides. Compositions produced by such methods are also disclosed herein. Embodiments of the methods may include contacting graphene oxides with the environment and sorption of the materials to the graphene oxides. In some embodiments, the sorption is relatively rapid in comparison to known sorbents; even in the presence of relatively higher concentrations of complexing agents. In some embodiments, the methods further include separating the graphene oxides that sorbed materials from the environment. Yet other embodiments may include desorbing the materials from the graphene oxides that sorbed the materials, and compositions therefrom.Type: ApplicationFiled: October 30, 2016Publication date: June 1, 2017Applicant: Zonko, LLCInventors: James M. Tour, Alexander Slesarev, Dmitry V. Kosynkin, Anna Y. Romanchuk, Stepan N. Kalmykov
-
Patent number: 9534319Abstract: Methods for dissolving carbon materials such as, for example, graphite, graphite oxide, oxidized graphene nanoribbons and reduced graphene nanoribbons in a solvent containing at least one superacid are described herein. Both isotropic and liquid crystalline solutions can be produced, depending on the concentration of the carbon material The superacid solutions can be formed into articles such as, for example, fibers and films, mixed with other materials such as, for example, polymers, or used for functionalization of the carbon material. The superacid results in exfoliation of the carbon material to produce individual particles of the carbon material. In some embodiments, graphite or graphite oxide is dissolved in a solvent containing at least one superacid to form graphene or graphene oxide, which can be subsequently isolated. In some embodiments, liquid crystalline solutions of oxidized graphene nanoribbons in water are also described.Type: GrantFiled: February 19, 2010Date of Patent: January 3, 2017Assignee: WILLIAM MARSH RICE UNIVERSITYInventors: James M. Tour, Matteo Pasquali, Natnael Behabtu, Jay R. Lomeda, Dmitry V. Kosynkin, Amanda Duque, Micah J. Green, A. Nicholas Parra-Vasquez, Colin Young
-
Patent number: 9511346Abstract: Various aspects of the present invention pertain to methods of sorption of various materials from an environment, including radioactive elements, chlorates, perchlorates, organohalogens, and combinations thereof. Such methods generally include associating graphene oxides with the environment. This in turn leads to the sorption of the materials to the graphene oxides. In some embodiments, the methods of the present invention also include a step of separating the graphene oxides from the environment after the sorption of the materials to the graphene oxides. More specific aspects of the present invention pertain to methods of sorption of radionuclides (such as actinides) from a solution by associating graphene oxides with the solution and optionally separating the graphene oxides from the solution after the sorption.Type: GrantFiled: February 27, 2012Date of Patent: December 6, 2016Inventors: James M. Tour, Alexander Slesarev, Dmitry V. Kosynkin, Anna Y. Romanchuk, Stepan N. Kalmykov
-
Patent number: 9428394Abstract: A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.Type: GrantFiled: May 14, 2010Date of Patent: August 30, 2016Assignee: WILLIAM MARSH RICE UNIVERSITYInventors: James M. Tour, Dmitry V. Kosynkin
-
Patent number: 9005460Abstract: The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.Type: GrantFiled: October 11, 2011Date of Patent: April 14, 2015Assignee: William Marsh Rice UniversityInventors: James M. Tour, Ayrat M. Dimiev, Dmitry V. Kosynkin
-
Patent number: 8784866Abstract: Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.Type: GrantFiled: October 3, 2008Date of Patent: July 22, 2014Assignees: William Marsh Rice University, Board of Regents, The University of Texas SystemInventors: James M. Tour, Rebecca Lucente-Schultz, Ashley Leonard, Dmitry V. Kosynkin, Brandi Katherine Price, Jared L. Hudson, Jodie L. Conyers, Jr., Valerie C. Moore, S. Ward Casscells, Jeffrey N. Myers, Zvonimir L. Milas, Kathy A. Mason, Luka Milas
-
Publication number: 20140120024Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.Type: ApplicationFiled: January 6, 2014Publication date: May 1, 2014Applicant: WILLIAM MARSH RICE UNIVERSITYInventors: James M. Tour, Dmitry V. Kosynkin, Amanda Dugue, Brandi Katherine Price-Hoelscher
-
Patent number: 8703090Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.Type: GrantFiled: August 19, 2009Date of Patent: April 22, 2014Assignee: William Marsh Rice UniversityInventors: James M. Tour, Dmitry V. Kosynkin, Amanda Higginbotham, Brandi Katherine Price
-
Publication number: 20140081067Abstract: Various aspects of the present invention pertain to methods of sorption of various materials from an environment, including radioactive elements, chlorates, perchlorates, organohalogens, and combinations thereof. Such methods generally include associating graphene oxides with the environment. This in turn leads to the sorption of the materials to the graphene oxides. In some embodiments, the methods of the present invention also include a step of separating the graphene oxides from the environment after the sorption of the materials to the graphene oxides. More specific aspects of the present invention pertain to methods of sorption of radionuclides (such as actinides) from a solution by associating graphene oxides with the solution and optionally separating the graphene oxides from the solution after the sorption.Type: ApplicationFiled: February 27, 2012Publication date: March 20, 2014Applicant: WILLIAM MARSH RICE UNIVERSITYInventors: James M. Tour, Alexander Slesarev, Dmitry V. Kosynkin, Anna Y. Romanchuk, Stepan N. Kalmykov
-
Publication number: 20130319973Abstract: The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.Type: ApplicationFiled: October 11, 2011Publication date: December 5, 2013Applicant: William Marsh Rice UniversityInventors: James M. Tour, Ayrat M. Dimiev, Dmitry V. Kosynkin
-
Patent number: 8362295Abstract: Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.Type: GrantFiled: January 8, 2009Date of Patent: January 29, 2013Assignee: William Marsh Rice UniversityInventors: James M. Tour, Howard K. Schmidt, Condell D. Doyle, Dmitry V. Kosynkin, Jay R. Lomeda
-
Patent number: 8183180Abstract: Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.Type: GrantFiled: July 8, 2010Date of Patent: May 22, 2012Assignee: William Marsh Rice UniversityInventors: James M. Tour, Howard K. Schmidt, Jay R. Lomeda, Dmitry V. Kosynkin, Condell D. Doyle
-
Publication number: 20120063988Abstract: Methods for dissolving carbon materials such as, for example, graphite, graphite oxide, oxidized graphene nanoribbons and reduced graphene nanoribbons in a solvent containing at least one superacid are described herein. Both isotropic and liquid crystalline solutions can be produced, depending on the concentration of the carbon material The superacid solutions can be formed into articles such as, for example, fibers and films, mixed with other materials such as, for example, polymers, or used for functionalization of the carbon material. The superacid results in exfoliation of the carbon material to produce individual particles of the carbon material. In some embodiments, graphite or graphite oxide is dissolved in a solvent containing at least one superacid to form graphene or graphene oxide, which can be subsequently isolated. In some embodiments, liquid crystalline solutions of oxidized graphene nanoribbons in water are also described.Type: ApplicationFiled: February 19, 2010Publication date: March 15, 2012Applicant: WILLIAM MARSH RICE UNIVERSITYInventors: James M. Tour, Matteo Pasquali, Natnael Behabtu, Jay R. Lomeda, Dmitry V. Kosynkin, Amanda Duque, Micah J. Green, A. Nicholas Parra-Vasquez, Colin Young
-
Publication number: 20110144386Abstract: Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.Type: ApplicationFiled: January 8, 2009Publication date: June 16, 2011Applicant: William Marsh Rice UniversityInventors: James M. Tour, Howard K. Schmidt, Condell D. Doyle, Dmitry V. Kosynkin, Jay R. Lomeda
-
Publication number: 20110059871Abstract: Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.Type: ApplicationFiled: July 8, 2010Publication date: March 10, 2011Applicant: William Marsh Rice UniversityInventors: James M. Tour, Howard K. Schmidt, Jay R. Lomeda, Dmitry V. Kosynkin, Condell D. Doyle
-
Publication number: 20100197783Abstract: A method of reducing side effects of damage in a human subject exposed to radiation includes administering to the human subject carbon nanotubes in a pharmaceutically acceptable carrier after or prior to exposure to radiation. A composition for reducing radical damage includes a carbon nanotube which is functionalized (1) for substantial water solubility and (2) with a radical trapping agent appended to the carbon nanotube forming a radical scavenger-carbon nanotube conjugate.Type: ApplicationFiled: March 26, 2008Publication date: August 5, 2010Inventors: James M. Tour, Meng Lu, Rebecca Lucente-Schultz, Ashley Leonard, Condell Dewayne Doyle, Dmitry V. Kosynkin, Brandi Katherine Price
-
Publication number: 20100105834Abstract: Methods for producing macroscopic quantities of oxidized graphene nanoribbons are disclosed herein. The methods include providing a plurality of carbon nanotubes and reacting the plurality of carbon nanotubes with at least one oxidant to form oxidized graphene nanoribbons. The at least one oxidant is operable to longitudinally open the carbon nanotubes. In some embodiments, the reacting step takes place in the presence of at least one acid. In some embodiments, the reacting step takes place in the presence of at least one protective agent. Various embodiments of the present disclosure also include methods for producing reduced graphene nanoribbons by reacting oxidized graphene nanoribbons with at least one reducing agent. Oxidized graphene nanoribbons, reduced graphene nanoribbons and compositions and articles derived therefrom are also disclosed herein.Type: ApplicationFiled: August 19, 2009Publication date: April 29, 2010Inventors: James M. Tour, Dmitry V. Kosynkin, Amanda Higginbotham, Brandi Katherine Price
-
Publication number: 20090170768Abstract: Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.Type: ApplicationFiled: October 3, 2008Publication date: July 2, 2009Applicant: William Marsh Rice UniversityInventors: James M. Tour, Valerie C. Moore, S. Ward Casscella, Jeffrey N. Myers, Zvonimir L. Milas, Kathy A. Mason, Luka Milas, Brandl Katherine Price, Jared L. Hudson, Jodie L. Conyers, JR., Rebecca L. Lucente-Schultz, Ashley Leonard, Dmitry V. Kosynkin