Patents by Inventor Dmytro Korenkevych

Dmytro Korenkevych has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230385668
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 31, 2023
    Publication date: November 30, 2023
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11704586
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: July 18, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20220335320
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: May 9, 2022
    Publication date: October 20, 2022
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 11410067
    Abstract: A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: August 9, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jason Rolfe, Dmytro Korenkevych, Mani Ranjbar, Jack R. Raymond, William G. Macready
  • Patent number: 11348026
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 31, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 10817134
    Abstract: Substantially as described and illustrated herein including devices, methods of operation for the systems or devices, articles of manufacture including stores processor-executable instructions, and a system including a robot. The system includes at least one processor. The system may further include a nontransitory processor-readable storage device communicatively coupled to at least one processor and which stores processor-executable instructions which, when executed by the at least one processor, cause the at least one processor to composite environment information that represents an environment and virtual item information that represents the virtual item to produce composited information, present to an agent the composited information, and receive action information that represents an action for the robot to perform via the output system.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: October 27, 2020
    Assignee: KINDRED SYSTEMS INC.
    Inventors: Suzanne Gildert, Geordie S. Rose, Dmytro Korenkevych, Miles F. H. Steininger
  • Publication number: 20200264758
    Abstract: Substantially as described and illustrated herein including devices, methods of operation for the systems or devices, articles of manufacture including stores processor-executable instructions, and a system including a robot. The system includes at least one processor. The system may further include a nontransitory processor-readable storage device communicatively coupled to at least one processor and which stores processor-executable instructions which, when executed by the at least one processor, cause the at least one processor to composite environment information that represents an environment and virtual item information that represents the virtual item to produce composited information, present to an agent the composited information, and receive action information that represents an action for the robot to perform via the output system.
    Type: Application
    Filed: April 22, 2020
    Publication date: August 20, 2020
    Inventors: Suzanne Gildert, Geordie S. Rose, Dmytro Korenkevych, Miles F.H. Steininger
  • Publication number: 20200210876
    Abstract: A computational system can include digital circuitry and analog circuitry, for instance a digital processor and a quantum processor. The quantum processor can operate as a sample generator providing samples. Samples can be employed by the digital processing in implementing various machine learning techniques. For example, the digital processor can operate as a restricted Boltzmann machine. The computational system can operate as a quantum-based deep belief network operating on a training data-set.
    Type: Application
    Filed: August 18, 2016
    Publication date: July 2, 2020
    Inventors: Jason Rolfe, Dmytro Korenkevych, Mani Ranjbar, Jack R. Raymond, William G. Macready
  • Patent number: 10671240
    Abstract: Substantially as described and illustrated herein including devices, methods of operation for the systems or devices, articles of manufacture including stores processor-executable instructions, and a system including a robot. The system includes at least one processor. The system may further include a nontransitory processor-readable storage device communicatively coupled to at least one processor and which stores processor-executable instructions which, when executed by the at least one processor, cause the at least one processor to composite environment information that represents an environment and virtual item information that represents the virtual item to produce composited information, present to an agent the composited information, and receive action information that represents an action for the robot to perform via the output system.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: June 2, 2020
    Assignee: KINDRED SYSTEMS INC.
    Inventors: Suzanne Gildert, Geordie S. Rose, Dmytro Korenkevych, Miles F. H. Steininger
  • Publication number: 20200167685
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T. R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Patent number: 10599988
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: March 24, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Kelly T.R. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych
  • Publication number: 20200074241
    Abstract: A reinforcement learning architecture for facilitating reinforcement learning in connection with operation of an external real-time system that includes a plurality of devices operating in a real-world environment. The reinforcement learning architecture includes a plurality of communicators, a task manager, and a reinforcement learning agent that interact with each other to effectuate a policy for achieving a defined objective in the real-world environment. Each of the communicators receives sensory data from a corresponding device and the task manager generates a joint state vector based on the sensory data. The reinforcement learning agent generates, based on the joint state vector, a joint action vector, which the task manager parses into a plurality of actuation commands. The communicators transmit the actuation commands to the plurality of devices in the real-world environment.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 5, 2020
    Inventors: Ashique Rupam Mahmood, Brent J. Komer, Dmytro Korenkevych
  • Publication number: 20180349702
    Abstract: Substantially as described and illustrated herein including devices, methods of operation for the systems or devices, articles of manufacture including stores processor-executable instructions, and a system including a robot. The system includes at least one processor. The system may further include a nontransitory processor-readable storage device communicatively coupled to at least one processor and which stores processor-executable instructions which, when executed by the at least one processor, cause the at least one processor to composite environment information that represents an environment and virtual item information that represents the virtual item to produce composited information, present to an agent the composited information, and receive action information that represents an action for the robot to perform via the output system.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Inventors: Suzanne Gildert, Geordie S. Rose, Dmytro Korenkevych, Miles F.H. Steininger
  • Publication number: 20170255629
    Abstract: Computational systems implement problem solving using hybrid digital/quantum computing approaches. A problem may be represented as a problem graph which is larger and/or has higher connectivity than a working and/or hardware graph of a quantum processor. A quantum processor may be used determine approximate solutions, which solutions are provided as initial states to one or more digital processors which may implement classical post-processing to generate improved solutions. Techniques for solving problems on extended, more-connected, and/or “virtual full yield” variations of the processor's actual working and/or hardware graphs are provided. A method of operation in a computational system comprising a quantum processor includes partitioning a problem graph into sub-problem graphs, and embedding a sub-problem graph onto the working graph of the quantum processor. The quantum processor and a non-quantum processor-based device generate partial samples.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 7, 2017
    Inventors: Murray C. Thom, Aidan P. Roy, Fabian A. Chudak, Zhengbing Bian, William G. Macready, Robert B. Israel, Tomas J. Boothby, Sheir Yarkoni, Yanbo Xue, Dmytro Korenkevych