Patents by Inventor Do Hyang Kim

Do Hyang Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7582173
    Abstract: Disclosed is a single-phase amorphous alloy having an enhanced ductility. The single-phase amorphous alloy has a composition range of A100-a-bBaCb where a and b are respectively 0<a<15, 0?b?30 in atomic percent. Here, A includes at least one element selected from the group consisting of Be, Mg, Ca, Ti, Zr, Hf, Pt, Pd, Fe, Ni, and Cu. B includes at least one element selected from the group consisting of Y, La, Gd, Nb, Ta, Ag, Au, Co, and Zn. C includes at least one element selected from the group consisting of Al, In, Sn, B, C, Si, and P.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 1, 2009
    Assignee: Yonsei University
    Inventors: Eun Soo Park, Jong Hyun Na, Hye Jung Chang, Ju Yeon Lee, Byung Joo Park, Won Tae Kim, Do Hyang Kim
  • Patent number: 7563332
    Abstract: A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10.0 at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 21, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Eric Fleury, Yu-Chan Kim, Ki-Bae Kim, Jayamani Jayaraj, Do-Hyang Kim, Byung-Joo Park
  • Publication number: 20070267111
    Abstract: A nanometer-sized porous metallic glass and a method for manufacturing the same are provided. The porous metallic glass includes Ti (titanium) at 50.0 at % to 70.0 at %, Y (yttrium) at 0.5 at % to 10.0 at %, Al (aluminum) at 10.0 at % to 30.0 at %, Co (cobalt) at 10. at % to 30.0 at %, and impurities. Ti+Y+Al+Co+the impurities=100.0 at %.
    Type: Application
    Filed: November 22, 2006
    Publication date: November 22, 2007
    Applicant: Korea Institute of Science and Technology
    Inventors: Eric Fleury, Yu-Chan Kim, Ki-Bae Kim, Jayamani Jayaraj, Do-Hyang Kim, Byung-Joo Park
  • Publication number: 20070258846
    Abstract: Provided is a Nd-based two-phase separation amorphous alloy by adding an element having a big difference in heat of mixing in a Nd-based alloy with a superior amorphous formability through an inherent characteristic of compositional elements and consideration of thermodynamics, at the time of forming amorphous phase, to thereby enable two-phase separation amorphous alloy during solidification.
    Type: Application
    Filed: February 27, 2007
    Publication date: November 8, 2007
    Inventors: Eun Soo Park, Hye Jung Chang, Do Hyang Kim, Eun Young Jeong, Jin Kyu Lee, Hwi Jun Kim, Jung Chan Bae
  • Publication number: 20070175550
    Abstract: In Cu-based bulk amorphous matrix composite materials, comprising a Cu-based amorphous alloy containing high fusion point element(s) selected from a group of Ta, W or combination thereof, wherein the high fusion point element(s) has(have) a shape of crystalline grain and is(are) dispersed around a Cu-based amorphous matrix. Cu-based bulk amorphous matrix composite materials have the composition expressed as the following Chemical formula 1; [Chemical formula 1] CuaZrbTicRd where R is Ta, W or combination thereof, a, b, c and d are atomic weight ratio, a+b+c+d equals 100, a, b, c, and d have the range of 45?a?65, 10?b?35, 5?c?30, and 5?d?10, respectively.
    Type: Application
    Filed: April 2, 2007
    Publication date: August 2, 2007
    Applicant: Korea Institute of Science & Technology
    Inventors: Yu Chan Kim, Jae Chul Lee, Do Hyang Kim
  • Publication number: 20040256031
    Abstract: In Cu-based bulk amorphous matrix composite materials, comprising a Cu-based amorphous alloy containing high fusion point element(s) selected from a group of Ta, W or combination thereof, wherein the high fusion point element(s) has(have) a shape of crystalline grain and is(are) dispersed around a Cu-based amorphous matrix.
    Type: Application
    Filed: August 14, 2003
    Publication date: December 23, 2004
    Applicant: Korea Institute of Science and Technology
    Inventors: Yu Chan Kim, Jae Chul Lee, Do Hyang Kim
  • Patent number: 6669899
    Abstract: A ductile particle-reinforced amorphous matrix composite characterized in that ductile powder is dispersed into amorphous matrix and the mixture is plastically worked to be consolidated and a method for manufacturing the same are provided. The amorphous powder includes any alloy, which can be produced in the form of amorphous structure and which is selected from the group consisting of Ni-, Ti-, Zr-, Al-, Fe-, La-, Cu- and Mg-based alloys. The method for manufacturing a ductile particle-reinforced amorphous matrix composite, the method comprising steps of preparing a mixture consisting of amorphous powder and ductile powder, obtaining a billet by compacting the mixture in a hermetically sealing condition, and plastic working the mixture by processing the billet at the temperature in the super-cooled liquid region of the amorphous alloy.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: December 30, 2003
    Assignee: Yonsei University
    Inventors: Dong Hyun Bae, Min Ha Lee, Jin Kyu Lee, Do Hyang Kim, Won Tae Kim, Daniel J. Sordelet
  • Publication number: 20030140987
    Abstract: A ductile particle-reinforced amorphous matrix composite characterized in that ductile powder is dispersed into amorphous matrix and the mixture is plastically worked to be consolidated and a method for manufacturing the same are provided. The amorphous powder includes any alloy, which can be produced in the form of amorphous structure and which is selected from the group consisting of Ni-, Ti-, Zr-, Al-, Fe-, La-, Cu- and Mg-based alloys. The method for manufacturing a ductile particle-reinforced amorphous matrix composite, the method comprising steps of preparing a mixture consisting of amorphous powder and ductile powder, obtaining a billet by compacting the mixture in a hermetically sealing condition, and plastic working the mixture by processing the billet at the temperature in the super-cooled liquid region of the amorphous alloy.
    Type: Application
    Filed: January 25, 2002
    Publication date: July 31, 2003
    Inventors: Dong Hyun Bae, Jin Kyu Lee, Do Hyang Kim, Won Tae Kim, Daniel J. Sordelet, Min Ha Lee
  • Publication number: 20030029526
    Abstract: Disclosed is a quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability, and making method thereof. The metallic alloy comprises a composition of Mg-1˜10 at % Zn-0.1˜3 at % Y, in which a two-phase region consisting of a quasicrystalline phase and a magnesium-based solid solution phase exists. Constituting a matrix structure, the Mg-based solid solution phase (&agr;-Mg) is formed as a primary solid phase upon solidification. The quasicrystalline phase serves as a second phase and forms, together with the Mg-based solid solution phase, a eutectic phase, thereby reinforcing the matrix. The materials obtained through the hot rolling or extrusion of the cast alloy have an increased volume % of the second phase and thus show significantly increased strength.
    Type: Application
    Filed: September 3, 2002
    Publication date: February 13, 2003
    Inventors: Do Hyang Kim, Won Tae Kim, Dong Hyun Bae, Eun Soo Park, Seong Hoon Yi
  • Patent number: 6471797
    Abstract: Disclosed is a quasicrystalline phase-reinforced Mg-based metallic alloy with high warm and hot formability, and making method thereof. The metallic alloy comprises a composition of Mg—1˜10 at % Zn—0.1˜3 at % Y, in which a two-phase region consisting of a quascrystalline phase and a magnesium-based solid solution phase exists. Constituting a matrix structure, the Mg-based solid solution phase (&agr;—Mg) is formed as a primary solid phase upon solidification. The quasicrystalline phase serves as a second phase and forms, together with the Mg-based solid solution phase, a eutectic phase, thereby reinforcing the matrix. The materials obtained through the hot rolling or extrusion of the cast alloy have an increased volume % of the second phase and thus show significantly increased strength.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: October 29, 2002
    Assignee: Yonsei University
    Inventors: Do Hyang Kim, Won Tae Kim, Dong Hyun Bae, Eun Soo Park, Seong Hoon Yi
  • Patent number: 6325868
    Abstract: Disclosed are nickel-based amorphous alloy compositions, and particularly quaternary nickel-based amorphous alloy compositions containing nickel, zirconium and titanium as main constituent elements and additive Si or P, the quaternary nickel-zirconium-titanium-silicon alloy compositions comprising nickel in the range of 45 to 63 atomic %, zirconium plus titanium in the range of 32 to 48 atomic % and silicon in the range of 1 to 11 atomic %, and being represented by the general formula: Nia(Zr1−xTix)bSic. Also, at least one kind of element selected from the group consisting of V, Cr, Mn, Cu, Co, W, Sn, Mo, Y, C, B, P, Al can be added to the alloy compositions in the range of content of 2 to 15 atomic %. The quaternary nickel-zirconium-titanium-phosphorus alloy compositions comprising nickel in the range of 50 to 62 atomic %, zirconium plus titanium in the range of 33 to 46 atomic % and phosphorus in the range of 3 to 8 atomic %, and being represented by the general formula: Nid(Zr1−yTiy)ePf.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: December 4, 2001
    Assignee: Yonsei University
    Inventors: Do Hyang Kim, Won Tae Kim, Sheng Hoon Yi, Jin Kyu Lee, Min Ha Lee, Tae Gyu Park, Ju Gun Park, Hyun Kyu Lim, Jong Shim Jang