Patents by Inventor Dodd Joseph Gray
Dodd Joseph Gray has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11506951Abstract: Optical read-out of a cryogenic device (such as a superconducting logic or detector element) can be performed with a forward-biased optical modulator that is directly coupled to the cryogenic device without any intervening electrical amplifier. Forward-biasing at cryogenic temperatures enables very high modulation efficiency (1,000-10,000 pm/V) of the optical modulator, and allows for optical modulation with millivolt driving signals and microwatt power dissipation in the cryogenic environment. Modulated optical signals can be coupled out of the cryostat via an optical fiber, reducing the thermal load on the cryostat. Using optical fiber instead of electrical wires can increase the communication bandwidth between the cryogenic environment and room-temperature environment to bandwidth densities as high as Tbps/mm2 using wavelength division multiplexing.Type: GrantFiled: November 6, 2020Date of Patent: November 22, 2022Assignee: Massachusetts Institute of TechnologyInventors: Rajeev J. Ram, Dodd Joseph Gray, Amir H. Atabaki, Marc De Cea Falco
-
Publication number: 20210208470Abstract: Optical read-out of a cryogenic device (such as a superconducting logic or detector element) can be performed with a forward-biased optical modulator that is directly coupled to the cryogenic device without any intervening electrical amplifier. Forward-biasing at cryogenic temperatures enables very high modulation efficiency (1,000-10,000 pm/V) of the optical modulator, and allows for optical modulation with millivolt driving signals and microwatt power dissipation in the cryogenic environment. Modulated optical signals can be coupled out of the cryostat via an optical fiber, reducing the thermal load on the cryostat. Using optical fiber instead of electrical wires can increase the communication bandwidth between the cryogenic environment and room-temperature environment to bandwidth densities as high as Tbps/mm2 using wavelength division multiplexing.Type: ApplicationFiled: November 6, 2020Publication date: July 8, 2021Inventors: Rajeev J. RAM, Dodd Joseph GRAY, Amir H. Atabaki, Marc De Cea Falco
-
Patent number: 10205046Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: GrantFiled: June 26, 2017Date of Patent: February 12, 2019Assignee: Massachusetts Institute of TechnologyInventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram
-
Publication number: 20170294551Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: ApplicationFiled: June 26, 2017Publication date: October 12, 2017Inventors: Parthiban Santhanam, Dodd Joseph GRAY, Rajeev Jagga RAM
-
Patent number: 9722144Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: GrantFiled: August 14, 2014Date of Patent: August 1, 2017Assignee: Massachusetts Institute of TechnologyInventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram
-
Patent number: 9557215Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: GrantFiled: August 16, 2013Date of Patent: January 31, 2017Assignee: Massachusetts Institute of TechnologyInventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram
-
Publication number: 20150311401Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: ApplicationFiled: August 14, 2014Publication date: October 29, 2015Applicant: Massachusetts Institute of TechnologyInventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram
-
Publication number: 20140159582Abstract: Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V<kBT/q) can be accomplished by injecting phonons generated by non-radiative recombination back into the LED's semiconductor lattice. This raises the temperature of the LED's active rejection, resulting in thermally assisted injection of holes and carriers into the LED's active region. This phonon recycling or thermo-electric pumping process can be promoted by heating the LED with an external source (e.g., exhaust gases or waste heat from other electrical components). It can also be achieved via internal heat generation, e.g., by thermally insulating the LED's diode structure to prevent (rather than promote) heat dissipation. In other words, trapping heat generated by the LED within the LED increases LED efficiency under certain bias conditions.Type: ApplicationFiled: August 16, 2013Publication date: June 12, 2014Inventors: Parthiban Santhanam, Dodd Joseph Gray, Rajeev Jagga Ram