Patents by Inventor Doewon Park

Doewon Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11073421
    Abstract: Optical detectors and methods of forming them are provided. The detector includes: a controller, pump and probe laser generators that generate modulated pump laser and probe lasers, respectively, a microring cavity that receives the lasers, a microbridge, and a photodetector. The microring cavity includes covered and exposed portions. The microbridge is suspended above the exposed portion and interacts with an evanescent optical field. The wavelength and modulated power of the pump laser are controlled to generate the evanescent optical field that excites the microbridge to resonance. The microbridge absorbs optical radiation which changes the resonance frequency proportionately. The probe laser is modulated in proportion to a vibration amplitude of the microbridge to form a modulated probe laser which is provided to the photodetector.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marcel Pruessner, Doewon Park, Todd Stievater, Dmitry Kozak, William Rabinovich
  • Publication number: 20200049549
    Abstract: Optical detectors and methods of forming them are provided. The detector includes: a controller, pump and probe laser generators that generate modulated pump laser and probe lasers, respectively, a microring cavity that receives the lasers, a microbridge, and a photodetector. The microring cavity includes covered and exposed portions. The microbridge is suspended above the exposed portion and interacts with an evanescent optical field. The wavelength and modulated power of the pump laser are controlled to generate the evanescent optical field that excites the microbridge to resonance. The microbridge absorbs optical radiation which changes the resonance frequency proportionately. The probe laser is modulated in proportion to a vibration amplitude of the microbridge to form a modulated probe laser which is provided to the photodetector.
    Type: Application
    Filed: August 9, 2019
    Publication date: February 13, 2020
    Inventors: Marcel Pruessner, Doewon Park, Todd Stievater, Dmitry Kozak, William Rabinovich
  • Patent number: 10192979
    Abstract: A device having: a substrate having a dielectric surface; a gate electrode; a drain electrode; a source electrode having a conductive contact and a two-dimensional material edge; and a dielectric material between the source and the gate. The source is adjacent to the gate. The drain electrode is not laterally between the edge and the gate electrode, and the distance from the drain electrode to the edge is greater than the distance from the gate electrode to the edge. The edge does not contact any other component of the device. The gate, drain, and source are not in electrical contact with each other. There is a line of sight or electron path from the edge to the drain electrode.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: January 29, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan L. Shaw, John Bradley Boos, Kevin Jensen, James G. Champlain, Bradford B. Pate, Byoung-don Kong, Doewon Park, Joan E. Yater
  • Publication number: 20170012103
    Abstract: A device having: a substrate having a dielectric surface; a gate electrode; a drain electrode; a source electrode having a conductive contact and a two-dimensional material edge; and a dielectric material between the source and the gate. The source is adjacent to the gate. The drain electrode is not laterally between the edge and the gate electrode, and the distance from the drain electrode to the edge is greater than the distance from the gate electrode to the edge. The edge does not contact any other component of the device. The gate, drain, and source are not in electrical contact with each other. There is a line of sight or electron path from the edge to the drain electrode.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jonathan L. Shaw, John Bradley Boos, Kevin Jensen, James G. Champlain, Bradford B. Pate, Byoung-don Kong, Doewon Park, Joan E. Yater
  • Patent number: 9057891
    Abstract: A waveguide device for frequency mixing or conversion through birefringent phase matching, having a horizontal waveguide suspended above a substrate. The waveguide is formed of a zinc blend type III-V semiconductor material with a high nonlinear susceptibility.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: June 16, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Todd H. Stievater, Jacob B. Khurgin, Doewon Park, Marcel W. Pruessner, William S. Rabinovich, Rita Mahon
  • Publication number: 20130294719
    Abstract: A waveguide device for frequency mixing or conversion through birefringent phase matching, having a horizontal waveguide suspended above a substrate. The waveguide is formed of a zinc blende type III-V semiconductor material with a high nonlinear susceptibility.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 7, 2013
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: Todd H. Stievater, Jacob B. Khurgin, Doewon Park, Marcel W. Pruessner, William S. Rabinovich, Rita Mahon
  • Patent number: 8427738
    Abstract: A waveguide device for frequency mixing or conversion through birefringent phase matching, having two suspended horizontal waveguides with an air-filled horizontal nanoslot between them. The waveguides are formed of a material with a high nonlinear susceptibility, and one waveguide can be n-doped with the other waveguide slab being p-doped. The system can be tuned to operate at different frequencies by varying the nanoslot gap distance by electrostatically actuating the suspended air-clad waveguides.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 23, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Todd H. Stievater, Jacob B. Khurgin, Doewon Park, Marcel W. Pruessner, William S. Rabinovich
  • Publication number: 20110188112
    Abstract: A waveguide device for frequency mixing or conversion through birefringent phase matching, having two suspended horizontal waveguides with an air-filled horizontal nanoslot between them. The waveguides are formed of a material with a high nonlinear susceptibility, and one waveguide can be n-doped with the other waveguide slab being p-doped. The system can be tuned to operate at different frequencies by varying the nanoslot gap distance by electrostatically actuating the suspended air-clad waveguides.
    Type: Application
    Filed: October 8, 2010
    Publication date: August 4, 2011
    Inventors: Todd H. Stievater, Jacob B. Khurgin, Doewon Park, Marcel W. Pruessner, William S. Rabinovich
  • Patent number: 6133593
    Abstract: Heterostructure field-effect transistors (HFETs) and other electronic devs are fabricated from a series of semiconductor layers to have reduced impact ionization. On to a first barrier layer there is added a unique second subchannel layer having high quality transport properties for reducing impact ionization. A third barrier layer having a controlled thickness to permit electrons to tunnel through the layer to the subchannel layer is added as a spacer for the fourth main channel layer. A fifth multilayer composite barrier layer is added which has at least a barrier layer in contact with the fourth channel layer and on top a sixth cap layer is applied. The device is completed by adding two ohmic contacts in a spaced apart relationship on the sixth cap layer with a Schottky gate between them which is formed in contact with the fifth barrier layer.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: October 17, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: J. Brad Boos, Ming-Jey Yang, Brian R. Bennett, Doewon Park, Walter Kruppa
  • Patent number: 5798540
    Abstract: An electronic device characterized by a GaAs substrate and a base disposed n the substrate, the base comprising InAs channel layer, AlSb layer above the channel layer, In.sub.x Al.sub.1-x As.sub.y Sb.sub.1-y layer containing at least In, Al, and As disposed above the AlSb channel layer, InAs cap layer disposed above and in contact with the In.sub.x Al.sub.1-x As.sub.y Sb.sub.1-y layer disposed below the InAs channel layer and in contact with the substrate, p.sup.+ GaSb layer disposed within the AlSb layer, Schottky gate with a pad disposed on and in contact with the In.sub.x Al.sub.1-x As.sub.y Sb.sub.1-y layer, at least one ohmic contact disposed on the InAs cap layer, and a trench extending through the base to the substrate isolating the gate bonding pad from the device and providing a gate air bridge which prevents contact between the gate and the InAs layer.
    Type: Grant
    Filed: April 29, 1997
    Date of Patent: August 25, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: John Bradley Boos, Walter Kruppa, Doewon Park, Brian R. Bennett