Patents by Inventor Domenico Chiera

Domenico Chiera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965455
    Abstract: The subject matter of this specification can be embodied in, among other things, a method of igniting an air/fuel mixture in an internal combustion engine includes receiving an air/fuel mixture into a pre-combustion chamber, the pre-combustion chamber enclosing a portion of an igniter, igniting the air/fuel mixture in in the pre-combustion chamber with the igniter to produce a flame, directing the flame to eject the pre-combustion chamber through a collection of passages in a wall of the pre-combustion chamber, toward a peripheral wall of a main combustion chamber of the internal combustion engine, igniting, by the flame, air/fuel mixture in the main combustion chamber adjacent the peripheral wall, and then igniting air/fuel mixture in the main combustion chamber in a central region of the main combustion chamber with a propagating flame front of the ignited air/fuel mixture or a portion of the directed flame adjacent the peripheral wall.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: April 23, 2024
    Assignee: Woodward, Inc.
    Inventors: Domenico Chiera, Charles Brennecke, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Gregory James Hampson
  • Patent number: 11955672
    Abstract: The subject matter of this specification can be embodied in, among other things, a hydrogen fuel cell anode control system including a hydrogen inlet configured to receive pressurized hydrogen, a hydrogen outlet configured to be fluidically coupled to an anode manifold of a hydrogen fuel cell, a recirculation inlet configured to receive overflow hydrogen from the anode manifold, a hydrogen pressure regulator configured to receive pressurized hydrogen from the hydrogen inlet, a hydrogen recirculation module configured to mix hydrogen received from the hydrogen pressure regulator and the recirculation inlet, and provide a hydrogen mixture to the hydrogen outlet, a differential pressure measurement module configured to measure a differential pressure between the anode manifold and a cathode manifold of the hydrogen fuel cell, and a controller configured to control at least one of the hydrogen pressure regulator or the hydrogen recirculation module based on the measured differential pressure.
    Type: Grant
    Filed: October 19, 2022
    Date of Patent: April 9, 2024
    Assignee: Woodward, Inc.
    Inventors: Yi Han, Nolan Polley, Domenico Chiera, Gregory James Hampson
  • Patent number: 11686278
    Abstract: The subject matter of this specification can be embodied in, among other things, a gas mixer that includes a convergent-divergent nozzle comprising a convergent portion and a divergent portion and defining a first gas flow path, an air housing comprising an air inlet configured to supply air to the first gas flow path upstream of the convergent-divergent nozzle, a gas housing defining a second gas flow path and including a first gas inlet configured to receive a secondary gas and allow the secondary gas into a second gas flow path, and a gas nozzle positioned parallel to and centrally within the first gas flow path in a convergent portion of the convergent-divergent nozzle, the gas nozzle configured to supply the secondary gas to the first gas flow path upstream of the divergent portion.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: June 27, 2023
    Assignee: Woodward, Inc.
    Inventors: Domenico Chiera, Gregory James Hampson, Rohit Deepak Vaidya
  • Patent number: 11674494
    Abstract: A pre-chamber spark plug that includes a shell, and an end cap attached to the shell. Additionally, the pre-chamber spark plug includes an insulator disposed within the shell. In a particular embodiment, a center electrode has a first portion surrounded by the insulator, and a second portion that extends from the insulator into a pre-chamber. The pre-chamber defined by the shell and end cap. In a further embodiment, a ground electrode is attached to the shell. In particular embodiments, the ground electrode is tubular in shape and includes an inner spark surface ring spaced in surrounding relation to the center electrode to create a spark gap, an outer ring attached to the shell, and a plurality of rounded spokes connecting the inner and outer rings. In a particular embodiment, the ground and center electrodes accommodate attachment of precious metal alloys to increase electrode surface life.
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: June 13, 2023
    Assignee: Woodward, Inc.
    Inventors: Gregory James Hampson, Domenico Chiera
  • Publication number: 20230118048
    Abstract: The subject matter of this specification can be embodied in, among other things, a hydrogen fuel cell anode control system including a hydrogen inlet configured to receive pressurized hydrogen, a hydrogen outlet configured to be fluidically coupled to an anode manifold of a hydrogen fuel cell, a recirculation inlet configured to receive overflow hydrogen from the anode manifold, a hydrogen pressure regulator configured to receive pressurized hydrogen from the hydrogen inlet, a hydrogen recirculation module configured to mix hydrogen received from the hydrogen pressure regulator and the recirculation inlet, and provide a hydrogen mixture to the hydrogen outlet, a differential pressure measurement module configured to measure a differential pressure between the anode manifold and a cathode manifold of the hydrogen fuel cell, and a controller configured to control at least one of the hydrogen pressure regulator or the hydrogen recirculation module based on the measured differential pressure.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 20, 2023
    Inventors: Yi Han, Nolan Polley, Domenico Chiera, Gregory James Hampson
  • Publication number: 20230101071
    Abstract: The subject matter of this specification can be embodied in, among other things, a method performed in connection with an internal combustion engine, and the method including receiving a pressure signal from a combustion chamber pressure sensor during a first range of volumes, the first range corresponding to a portion of a compression phase, the received pressure being a first pressure, providing, based on the received pressure signal, a first pulse of fuel at a first position of the body during the compression phase, and providing, based on the received pressure signal a second pulse of fuel at a second position of the body during the compression phase.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 30, 2023
    Inventors: Domenico Chiera, Gregory James Hampson
  • Patent number: 11608789
    Abstract: A housing defines a gaseous fuel inlet and a gaseous fuel outlet. A rotor defines an internal flow passage therethrough that rotates with the rotor to, alternately, allow gaseous fuel flow, or to block gaseous fuel flow, between the inlet and the outlet, based on a position of the rotor. A seal is biased to abut an exterior surface of the rotor. The seal is between the rotor and the outlet. An actuator is rotably coupled to the rotor. The driver is configured to rotate the rotor. A controller is in communication with the driver and is configured to control the driver to rotate at a rate based on an engine speed of the engine.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: March 21, 2023
    Assignee: Woodward, Inc.
    Inventors: Domenico Chiera, John Karspeck, Michael Ryan Buehner, Samuel James McCreery
  • Publication number: 20230060293
    Abstract: A housing defines a gaseous fuel inlet and a gaseous fuel outlet. A rotor defines an internal flow passage therethrough that rotates with the rotor to, alternately, allow gaseous fuel flow, or to block gaseous fuel flow, between the inlet and the outlet, based on a position of the rotor. A seal is biased to abut an exterior surface of the rotor. The seal is between the rotor and the outlet. An actuator is rotably coupled to the rotor. The driver is configured to rotate the rotor. A controller is in communication with the driver and is configured to control the driver to rotate at a rate based on an engine speed of the engine.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Domenico Chiera, John Karspeck, Michael Ryan Buehner, Samuel James McCreery
  • Publication number: 20220389858
    Abstract: The subject matter of this specification can be embodied in, among other things, a method of igniting an air/fuel mixture in an internal combustion engine includes receiving an air/fuel mixture into a pre-combustion chamber, the pre-combustion chamber enclosing a portion of an igniter, igniting the air/fuel mixture in in the pre-combustion chamber with the igniter to produce a flame, directing the flame to eject the pre-combustion chamber through a collection of passages in a wall of the pre-combustion chamber, toward a peripheral wall of a main combustion chamber of the internal combustion engine, igniting, by the flame, air/fuel mixture in the main o combustion chamber adjacent the peripheral wall, and then igniting air/fuel mixture in the main combustion chamber in a central region of the main combustion chamber with a propagating flame front of the ignited air/fuel mixture or a portion of the directed flame adjacent the peripheral wall.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Domenico Chiera, Charles Brennecke, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Gregory James Hampson
  • Patent number: 11415041
    Abstract: The subject matter of this specification can be embodied in, among other things, a method of igniting an air/fuel mixture in an internal combustion engine includes receiving an air/fuel mixture into a pre-combustion chamber, the pre-combustion chamber enclosing a portion of an igniter, igniting the air/fuel mixture in in the pre-combustion chamber with the igniter to produce a flame, directing the flame to eject the pre-combustion chamber through a collection of passages in a wall of the pre-combustion chamber, toward a peripheral wall of a main combustion chamber of the internal combustion engine, igniting, by the flame, air/fuel mixture in the main combustion chamber adjacent the peripheral wall, and then igniting air/fuel mixture in the main combustion chamber in a central region of the main combustion chamber with a propagating flame front of the ignited air/fuel mixture or a portion of the directed flame adjacent the peripheral wall.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: August 16, 2022
    Assignee: Woodward, Inc.
    Inventors: Domenico Chiera, Charles Brennecke, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Gregory James Hampson
  • Publication number: 20220136465
    Abstract: The subject matter of this specification can be embodied in, among other things, a gas mixer that includes a convergent-divergent nozzle comprising a convergent portion and a divergent portion and defining a first gas flow path, an air housing comprising an air inlet configured to supply air to the first gas flow path upstream of the convergent-divergent nozzle, a gas housing defining a second gas flow path and including a first gas inlet configured to receive a secondary gas and allow the secondary gas into a second gas flow path, and a gas nozzle positioned parallel to and centrally within the first gas flow path in a convergent portion of the convergent-divergent nozzle, the gas nozzle configured to supply the secondary gas to the first gas flow path upstream of the divergent portion.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 5, 2022
    Inventors: Domenico Chiera, Gregory James Hampson, Rohit Deepak Vaidya
  • Patent number: 11125180
    Abstract: A method of controlling combustion in an internal combustion engine includes measuring parameters of combustion in a cylinder of the engine during a combustion phase of the cylinder, after igniting an air/fuel charge in the cylinder, and calculating the heat release of combustion in the cylinder based on the measured parameters. An auto-ignition event of the air/fuel charge is identified based on the calculated heat release, and, based at least in part on the identified auto-ignition event, at least one of ignition timing in the cylinder for the next combustion phase of the cylinder or an amount of exhaust gas supplied to the cylinder for the next combustion phase of the cylinder is controlled to cause an auto-ignition event of the air/fuel charge in the next combustion phase to shift toward a specified crank angle.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 21, 2021
    Assignee: Woodward, Inc.
    Inventors: Gregory James Hampson, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Domenico Chiera
  • Publication number: 20210180537
    Abstract: A method of controlling combustion in an internal combustion engine includes measuring parameters of combustion in a cylinder of the engine during a combustion phase of the cylinder, after igniting an air/fuel charge in the cylinder, and calculating the heat release of combustion in the cylinder based on the measured parameters. An auto-ignition event of the air/fuel charge is identified based on the calculated heat release, and, based at least in part on the identified auto-ignition event, at least one of ignition timing in the cylinder for the next combustion phase of the cylinder or an amount of exhaust gas supplied to the cylinder for the next combustion phase of the cylinder is controlled to cause an auto-ignition event of the air/fuel charge in the next combustion phase to shift toward a specified crank angle.
    Type: Application
    Filed: March 1, 2021
    Publication date: June 17, 2021
    Applicant: Woodward, Inc.
    Inventors: Gregory James Hampson, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Domenico Chiera
  • Patent number: 10995705
    Abstract: A convergent nozzle is in a mixer housing and in a flow path from an air inlet of the mixer to an outlet of the mixer. A convergent-divergent nozzle is in the mixer housing and includes an air-exhaust gas inlet in fluid communication to receive fluid flow from the convergent nozzle and from the interior of the exhaust gas housing. A first nozzle module is configured to be received in the mixer housing and, when received in the mixer housing, define at least a portion of the convergent nozzle or the convergent-divergent nozzle. A second nozzle module is configured to be received in the mixer housing separate from the first nozzle module. The second nozzle module, when received in the mixer housing, is configured to define at least a portion of the convergent or the convergent-divergent nozzle. The second nozzle module has a different flow characteristic than the first nozzle module.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: May 4, 2021
    Assignee: Woodward, Inc.
    Inventors: Daniel B. Mastbergen, Domenico Chiera, Gregory James Hampson, Yi Han, James Po-Chang Chiu, Doug Leone, Henry David Gemmill Knutzen, Samuel James McCreery
  • Publication number: 20210079835
    Abstract: The subject matter of this specification can be embodied in, among other things, a method of igniting an air/fuel mixture in an internal combustion engine includes receiving an air/fuel mixture into a pre-combustion chamber, the pre-combustion chamber enclosing a portion of an igniter, igniting the air/fuel mixture in in the pre-combustion chamber with the igniter to produce a flame, directing the flame to eject the pre-combustion chamber through a collection of passages in a wall of the pre-combustion chamber, toward a peripheral wall of a main combustion chamber of the internal combustion engine, igniting, by the flame, air/fuel mixture in the main combustion chamber adjacent the peripheral wall, and then igniting air/fuel mixture in the main combustion chamber in a central region of the main combustion chamber with a propagating flame front of the ignited air/fuel mixture or a portion of the directed flame adjacent the peripheral wall.
    Type: Application
    Filed: September 16, 2019
    Publication date: March 18, 2021
    Applicant: Woodward, Inc.
    Inventors: Domenico Chiera, Charles Brennecke, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Gregory James Hampson
  • Patent number: 10934965
    Abstract: A method of controlling combustion in an internal combustion engine includes measuring parameters of combustion in a cylinder of the engine during a combustion phase of the cylinder, after igniting an air/fuel charge in the cylinder, and calculating the heat release of combustion in the cylinder based on the measured parameters. An auto-ignition event of the air/fuel charge is identified based on the calculated heat release, and, based at least in part on the identified auto-ignition event, at least one of ignition timing in the cylinder for the next combustion phase of the cylinder or an amount of exhaust gas supplied to the cylinder for the next combustion phase of the cylinder is controlled to cause an auto-ignition event of the air/fuel charge in the next combustion phase to shift toward a specified crank angle.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: March 2, 2021
    Assignee: Woodward, Inc.
    Inventors: Gregory James Hampson, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Domenico Chiera
  • Patent number: 10907532
    Abstract: A pre-chamber spark plug that includes a shell. Additionally, the pre-chamber spark plug includes an insulator disposed within the shell. In a particular embodiment, a center electrode has a first portion surrounded by the insulator, and a second portion that extends from the insulator into a pre-chamber. The pre-chamber defined by the shell. In a further embodiment, a ground electrode is attached to the insulator. In particular embodiments, the ground electrode is tubular in shape and includes an inner spark surface ring spaced in surrounding relation to the center electrode to create a spark gap, an outer ring attached to the shell, and a plurality of rounded spokes connecting the inner and outer rings. In a particular embodiment, the ground and center electrodes accommodate attachment of precious metal alloys to increase electrode surface life. In another embodiment the ground electrode and insulator is coaxial to the center electrode.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: February 2, 2021
    Assignee: Woodward. Inc.
    Inventors: Domenico Chiera, David C. Petruska, Gregory James Hampson
  • Publication number: 20200318570
    Abstract: A method of controlling combustion in an internal combustion engine includes measuring parameters of combustion in a cylinder of the engine during a combustion phase of the cylinder, after igniting an air/fuel charge in the cylinder, and calculating the heat release of combustion in the cylinder based on the measured parameters. An auto-ignition event of the air/fuel charge is identified based on the calculated heat release, and, based at least in part on the identified auto-ignition event, at least one of ignition timing in the cylinder for the next combustion phase of the cylinder or an amount of exhaust gas supplied to the cylinder for the next combustion phase of the cylinder is controlled to cause an auto-ignition event of the air/fuel charge in the next combustion phase to shift toward a specified crank angle.
    Type: Application
    Filed: April 5, 2019
    Publication date: October 8, 2020
    Inventors: Gregory James Hampson, Samuel James McCreery, Jeffrey Carlson, Suraj Nair, Domenico Chiera
  • Publication number: 20200256266
    Abstract: A convergent nozzle is in a mixer housing and in a flow path from an air inlet of the mixer to an outlet of the mixer. A convergent-divergent nozzle is in the mixer housing and includes an air-exhaust gas inlet in fluid communication to receive fluid flow from the convergent nozzle and from the interior of the exhaust gas housing. A first nozzle module is configured to be received in the mixer housing and, when received in the mixer housing, define at least a portion of the convergent nozzle or the convergent-divergent nozzle. A second nozzle module is configured to be received in the mixer housing separate from the first nozzle module. The second nozzle module, when received in the mixer housing, is configured to define at least a portion of the convergent or the convergent-divergent nozzle. The second nozzle module has a different flow characteristic than the first nozzle module.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Applicant: Woodward, Inc.
    Inventors: Daniel B. Mastbergen, Domenico Chiera, Gregory James Hampson, Yi Han, James Po-Chang Chiu, Doug Leone, Henry David Gemmill Knutzen, Samuel James McCreery
  • Patent number: 10634099
    Abstract: An exhaust gas recirculation mixer includes a convergent nozzle in a flow path from an air inlet of the mixer to an outlet of the mixer. The convergent nozzle is oriented converging toward the outlet of the mixer. The nozzle accelerates the flow to high velocity, which is released as a free-jet. The mixer includes an exhaust gas housing having an exhaust gas inlet into an interior of the exhaust gas housing, and a convergent-divergent nozzle having an air-fuel-exhaust gas inlet in fluid communication to receive fluid flow from the convergent nozzle (i.e., the free-jet), the interior of the exhaust gas housing, and a fuel supply into the mixer.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: April 28, 2020
    Assignee: Woodward, Inc.
    Inventors: Gregory James Hampson, Domenico Chiera