Patents by Inventor Domenico Di Mola

Domenico Di Mola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230291478
    Abstract: A co-packaged optical-electrical chip can include an application-specific integrated circuit (ASIC) and a plurality of optical modules, such as optical transceivers. The ASIC and each of the optical modules can exchange electrical signaling via integrated electrical paths. The ASIC can include Ethernet switch, error correction, bit-to-symbol mapping/demapping, and digital signal processing circuits to pre-compensate and post-compensate channel impairments (e.g., inter-channel/intra-channel impairments) in electrical and optical domains. The co-packaged inter-chip interface can be scaled to handle different data rates using spectral efficient signaling formats (e.g., QAM-64, PAM-8) without adding additional data lines to a given design and without significantly increasing the power consumption of the design.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 14, 2023
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes
  • Publication number: 20230254042
    Abstract: A sourceless co-packaged optical-electrical chip can include a plurality of different optical transceivers, each of which can transmit to an external destination or internal components. Each of the transceivers can be configured for a different modulation format, such as different pulse amplitude, phase shift key, and quadrature amplitude modulation formats. Different light sources provide light for processing by the transceivers, where the light source and transceivers can be configured for different applications (e.g., different distances) and data rates. An optical coupler can combine the light for the different transceivers for input into the sourceless co-packaged optical-electrical chip via a polarization maintaining media (e.g., polarization maintaining few mode fiber and polarization maintaining single mode fiber), where another coupler operates in splitting mode to separate the different channels of light for the different transceivers according to different co-packaged configurations.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 10, 2023
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes, Jeffrey J. Maki, Chul Soo Park, Yang Yue, Jon J. Anderson
  • Patent number: 11689289
    Abstract: A co-packaged optical-electrical chip can include an application-specific integrated circuit (ASIC) and a plurality of optical modules, such as optical transceivers. The ASIC and each of the optical modules can exchange electrical signaling via integrated electrical paths. The ASIC can include Ethernet switch, error correction, bit-to-symbol mapping/demapping, and digital signal processing circuits to pre-compensate and post-compensate channel impairments (e.g., inter-channel/intra-channel impairments) in electrical and optical domains. The co-packaged inter-chip interface can be scaled to handle different data rates using spectral efficient signaling formats (e.g., QAM-64, PAM-8) without adding additional data lines to a given design and without significantly increasing the power consumption of the design.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: June 27, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes
  • Patent number: 11632175
    Abstract: A sourceless co-packaged optical-electrical chip can include a plurality of different optical transceivers, each of which can transmit to an external destination or internal components. Each of the transceivers can be configured for a different modulation format, such as different pulse amplitude, phase shift key, and quadrature amplitude modulation formats. Different light sources provide light for processing by the transceivers, where the light source and transceivers can be configured for different applications (e.g., different distances) and data rates. An optical coupler can combine the light for the different transceivers for input into the sourceless co-packaged optical-electrical chip via a polarization maintaining media (e.g., polarization maintaining few mode fiber and polarization maintaining single mode fiber), where another coupler operates in splitting mode to separate the different channels of light for the different transceivers according to different co-packaged configurations.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: April 18, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes, Jeffery J. Maki, Chul Soo Park, Yang Yue, Jon J. Anderson
  • Publication number: 20220103261
    Abstract: A co-packaged optical-electrical chip can include an application-specific integrated circuit (ASIC) and a plurality of optical modules, such as optical transceivers. The ASIC and each of the optical modules can exchange electrical signaling via integrated electrical paths. The ASIC can include Ethernet switch, error correction, bit-to-symbol mapping/demapping, and digital signal processing circuits to pre-compensate and post-compensate channel impairments (e.g., inter-channel/intra-channel impairments) in electrical and optical domains. The co-packaged inter-chip interface can be scaled to handle different data rates using spectral efficient signaling formats (e.g., QAM-64, PAM-8) without adding additional data lines to a given design and without significantly increasing the power consumption of the design.
    Type: Application
    Filed: September 17, 2021
    Publication date: March 31, 2022
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes
  • Publication number: 20220052759
    Abstract: A sourceless co-packaged optical-electrical chip can include a plurality of different optical transceivers, each of which can transmit to an external destination or internal components. Each of the transceivers can be configured for a different modulation format, such as different pulse amplitude, phase shift key, and quadrature amplitude modulation formats. Different light sources provide light for processing by the transceivers, where the light source and transceivers can be configured for different applications (e.g., different distances) and data rates. An optical coupler can combine the light for the different transceivers for input into the sourceless co-packaged optical-electrical chip via a polarization maintaining media (e.g., polarization maintaining few mode fiber and polarization maintaining single mode fiber), where another coupler operates in splitting mode to separate the different channels of light for the different transceivers according to different co-packaged configurations.
    Type: Application
    Filed: September 9, 2021
    Publication date: February 17, 2022
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes, Jeffery J. Maki, Chul Soo Park, Yang Yue, Jon J. Anderson
  • Patent number: 11159240
    Abstract: A co-packaged optical-electrical chip can include an application-specific integrated circuit (ASIC) and a plurality of optical modules, such as optical transceivers. The ASIC and each of the optical modules can exchange electrical signaling via integrated electrical paths. The ASIC can include Ethernet switch, error correction, bit-to-symbol mapping/demapping, and digital signal processing circuits to pre-compensate and post-compensate channel impairments (e.g., inter-channel/intra-channel impairments) in electrical and optical domains. The co-packaged inter-chip interface can be scaled to handle different data rates using spectral efficient signaling formats (e.g., QAM-64, PAM-8) without adding additional data lines to a given design and without significantly increasing the power consumption of the design.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 26, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes
  • Patent number: 11159238
    Abstract: A sourceless co-packaged optical-electrical chip can include a plurality of different optical transceivers, each of which can transmit to an external destination or internal components. Each of the transceivers can be configured for a different modulation format, such as different pulse amplitude, phase shift key, and quadrature amplitude modulation formats. Different light sources provide light for processing by the transceivers, where the light source and transceivers can be configured for different applications (e.g., different distances) and data rates. An optical coupler can combine the light for the different transceivers for input into the sourceless co-packaged optical-electrical chip via a polarization maintaining media (e.g., polarization maintaining few mode fiber and polarization maintaining single mode fiber), where another coupler operates in splitting mode to separate the different channels of light for the different transceivers according to different co-packaged configurations.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: October 26, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes, Jeffery J. Maki, Chul Soo Park, Yang Yue, Jon J. Anderson
  • Patent number: 10797791
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: October 6, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Domenico Di Mola, Gert Grammel
  • Publication number: 20200127734
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Massimiliano SALSI, Domenico DI MOLA, Gert GRAMMEL
  • Patent number: 10547379
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: January 28, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Domenico Di Mola, Gert Grammel
  • Patent number: 10284290
    Abstract: In some examples, a network device comprises one or more processors operably coupled to a memory, and a routing unit configured for execution by the one or more processors to route data traffic on a layer 3 network overlaying an optical transport system; receive optical supervisory channel data for an optical supervisory channel of the optical transport system; determine the optical supervisory channel data indicates an event affecting transmission or detection of a signal transported by a wavelength, the wavelength traversing an optical fiber of the optical transport system and underlying a link of the layer 3 network; and reconfigure, in response to determining the optical supervisory channel data indicates the event, a configuration of the network device to modify routing operations of the network device with respect to the data traffic on the layer 3 network.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 7, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Gert Grammel, Domenico Di Mola, Steven B. Alleston
  • Patent number: 10182002
    Abstract: A device may cause an optical signal to be transmitted via a network path. The device may receive, from a network device, a link layer discover protocol (LLDP) message. The LLDP message may include signal characteristic information regarding the optical signal. The device may adjust transmission of the optical signal based on receiving the LLDP message. The device may cause an adjusted optical signal to be transmitted via the network path based on adjusting transmission of the optical signal.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 15, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Dai Song, Domenico Di Mola, Puneet Jain
  • Publication number: 20180270552
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Application
    Filed: May 14, 2018
    Publication date: September 20, 2018
    Inventors: Massimiliano SALSI, Domenico DI MOLA, Gert GRAMMEL
  • Patent number: 10014937
    Abstract: A device may receive, via a first optical supervisory channel, a first timing signal from a first network node. The first timing signal may be generated by a first clock, of the first network node, and may be used to synchronize the first clock, of the first network node, and a second clock of a second network node. The device may determine a parameter value based on the first timing signal, and may determine whether the parameter value satisfies a threshold value. The device may selectively transmit, via a second optical supervisory channel, a second timing signal to the second network node based on determining whether the parameter value satisfies the threshold value. The second timing signal may be used to synchronize the second clock, of the second network node, with the first clock of the first network node.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: July 3, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Gert Grammel
  • Patent number: 9973836
    Abstract: A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 15, 2018
    Assignee: Juniper Networks, Inc.
    Inventors: Massimiliano Salsi, Domenico Di Mola, Gert Grammel
  • Patent number: 9768586
    Abstract: Methods, systems, and apparatus, for optical communication. One apparatus includes a Fabry-Perot (FP) laser diode assembly coupled to a first port of a circulator; an optical amplifier coupled to a second port of the circulator; a wavelength division multiplexer (WDM) filter coupled to a third port of the circulator; and a Faraday rotator mirror coupled to the WDM filter.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: September 19, 2017
    Assignee: Oplink Communications, LLC
    Inventors: Sung-Ping Huang, Zuon-Min Chuang, Domenico Di Mola
  • Patent number: 9755956
    Abstract: A device may cause an optical signal to be transmitted via a network path. The device may receive, from a network device, a link layer discover protocol (LLDP) message. The LLDP message may include signal characteristic information regarding the optical signal. The device may adjust transmission of the optical signal based on receiving the LLDP message. The device may cause an adjusted optical signal to be transmitted via the network path based on adjusting transmission of the optical signal.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: September 5, 2017
    Assignee: Juniper Networks, Inc.
    Inventors: Dai Song, Domenico Di Mola, Puneet Jain
  • Patent number: 9640943
    Abstract: Methods, systems, and apparatus, for an external cavity FP laser. In one aspect, an apparatus is provided that includes a FP laser diode; a Faraday rotator (FR) coupled to receive an optical output of the FP laser diode and that rotates a polarization of the optical output; an optical fiber coupled at a first end to receive the output of the FR; a WDM filter coupled to a second end of the optical fiber to receive the optical signal from the optical fiber; and a FRM coupled directly or indirectly to an output of the WDM filter, wherein an optical output of the WDM filter is partially reflected by the FRM such that the polarization of a reflected beam is rotated, and wherein the reflected optical signal then passes through the FR with its polarization being rotated by the FR before it is injected back into the FP laser diode.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: May 2, 2017
    Assignee: Oplink Communications, LLC
    Inventors: Zuon-Min Chuang, Rang-Chen Yu, Domenico Di Mola, Sung-Ping Huang
  • Publication number: 20170093487
    Abstract: In some examples, a network device comprises one or more processors operably coupled to a memory, and a routing unit configured for execution by the one or more processors to route data traffic on a layer 3 network overlaying an optical transport system; receive optical supervisory channel data for an optical supervisory channel of the optical transport system; determine the optical supervisory channel data indicates an event affecting transmission or detection of a signal transported by a wavelength, the wavelength traversing an optical fiber of the optical transport system and underlying a link of the layer 3 network; and reconfigure, in response to determining the optical supervisory channel data indicates the event, a configuration of the network device to modify routing operations of the network device with respect to the data traffic on the layer 3 network.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Inventors: Gert Grammel, Domenico Di Mola, Steven B. Alleston