Patents by Inventor Dominic Christoph Walliman

Dominic Christoph Walliman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11501195
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: November 15, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Patent number: 10318881
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: June 11, 2019
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Publication number: 20170351974
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Application
    Filed: July 3, 2017
    Publication date: December 7, 2017
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Patent number: 9727824
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: August 8, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Publication number: 20160321559
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Application
    Filed: June 26, 2014
    Publication date: November 3, 2016
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman
  • Publication number: 20150006443
    Abstract: Systems, methods and aspects, and embodiments thereof relate to unsupervised or semi-supervised features learning using a quantum processor. To achieve unsupervised or semi-supervised features learning, the quantum processor is programmed to achieve Hierarchal Deep Learning (referred to as HDL) over one or more data sets. Systems and methods search for, parse, and detect maximally repeating patterns in one or more data sets or across data or data sets. Embodiments and aspects regard using sparse coding to detect maximally repeating patterns in or across data. Examples of sparse coding include L0 and L1 sparse coding. Some implementations may involve appending, incorporating or attaching labels to dictionary elements, or constituent elements of one or more dictionaries. There may be a logical association between label and the element labeled such that the process of unsupervised or semi-supervised feature learning spans both the elements and the incorporated, attached or appended label.
    Type: Application
    Filed: June 26, 2014
    Publication date: January 1, 2015
    Inventors: Geordie Rose, Suzanne Gildert, William G. Macready, Dominic Christoph Walliman