Patents by Inventor Dominic Siriani

Dominic Siriani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9671670
    Abstract: An electro-optic modulator imparts the information contained in an electrical signal traveling along a transmission line onto an optical carrier by using signal-related variations in the electrical signal's voltage to modulate the refractive index or absorption in an electro-optic material through which the optical carrier propagates. For optimal bandwidth and modulation efficiency, the microwave and optical waves should be matched in velocity. However, conventional microwave transmission lines have a microwave velocity that is somewhat higher than the optical group velocity in typical optical waveguides. Tuning a microwave transmission line's capacitance reduces the microwave velocity, but also reduces the impedance below the 50? impedance of most microwave components. Conversely, tuning the microwave transmission line's inductance makes it possible to match the microwave velocity to the optical group velocity over bandwidths of 100 GHz or greater while maintaining a microwave impedance of 50?.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: June 6, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Mark A. Hollis, Reuel B. Swint, Dominic Siriani, Joseph P. Donnelly, Paul William Juodawlkis
  • Publication number: 20160202592
    Abstract: An electro-optic modulator imparts the information contained in an electrical signal traveling along a transmission line onto an optical carrier by using signal-related variations in the electrical signal's voltage to modulate the refractive index or absorption in an electro-optic material through which the optical carrier propagates. For optimal bandwidth and modulation efficiency, the microwave and optical waves should be matched in velocity. However, conventional microwave transmission lines have a microwave velocity that is somewhat higher than the optical group velocity in typical optical waveguides. Tuning a microwave transmission line's capacitance reduces the microwave velocity, but also reduces the impedance below the 50? impedance of most microwave components. Conversely, tuning the microwave transmission line's inductance makes it possible to match the microwave velocity to the optical group velocity over bandwidths of 100 GHz or greater while maintaining a microwave impedance of 50?.
    Type: Application
    Filed: June 3, 2014
    Publication date: July 14, 2016
    Inventors: Mark A. Hollis, Reuel B. Swint, Dominic Siriani, Joseph P. Donnelly, Paul William Juodawlkis