Patents by Inventor Dominick Laddy

Dominick Laddy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230270834
    Abstract: The present disclosure provides fusion proteins comprising Mycobacterium tuberculosis (Mtb) antigens, nucleic acid molecules encoding the same, vectors comprising nucleic acid molecules, compositions comprising the same, and methods of eliciting an immune response against tuberculosis.
    Type: Application
    Filed: March 16, 2023
    Publication date: August 31, 2023
    Inventors: Dominick Laddy, Danilo Casimiro, Thomas Evans, Megan Fitzpatrick Forrest, Nathalie Cadieux
  • Patent number: 11638749
    Abstract: The present disclosure provides fusion proteins comprising Mycobacterium tuberculosis (Mtb) antigens, nucleic acid molecules encoding the same, vectors comprising nucleic acid molecules, compositions comprising the same, and methods of eliciting an immune response against tuberculosis.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: May 2, 2023
    Assignee: International AIDS Vaccine Initiative, Inc.
    Inventors: Dominick Laddy, Danilo Casimiro, Thomas Evans, Megan Fitzpatrick Forrest, Nathalie Cadieux
  • Publication number: 20200282038
    Abstract: The present disclosure provides fusion proteins comprising Mycobacterium tuberculosis (Mtb) antigens, nucleic acid molecules encoding the same, vectors comprising nucleic acid molecules, compositions comprising the same, and methods of eliciting an immune response against tuberculosis.
    Type: Application
    Filed: October 15, 2018
    Publication date: September 10, 2020
    Inventors: Dominick Laddy, Danilo Casimiro, Thomas Evans, Megan Fitzpatrick, Nathalie Cadieux
  • Publication number: 20180333480
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Application
    Filed: August 1, 2018
    Publication date: November 22, 2018
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy
  • Patent number: 10076565
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: September 18, 2018
    Assignee: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy
  • Publication number: 20170165353
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Application
    Filed: January 26, 2017
    Publication date: June 15, 2017
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy
  • Patent number: 9592285
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 14, 2017
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy
  • Patent number: 8697084
    Abstract: Improved anti-HIV immunogens and nucleic acid molecules that encode them are disclosed. Immunogens disclosed include those having consensus sequences for HIV Subtype A Envelope protein, those having consensus sequences for HIV Subtype B Envelope protein, those having consensus sequences for HIV Subtype C Envelope protein, those having consensus sequences for HIV Subtype D Envelope protein, those having consensus sequences for HIV Subtype B consensus Nef-Rev protein, and those having consensus sequences form HIV Gag protein subtypes A, B, C and D. Improved anti-HPV immunogens and nucleic acid molecules that encode them; improved anti-HCV immunogens and nucleic acid molecules that encode them; improved hTERT immunogens and nucleic acid molecules that encode them; and improved anti-Influenza immunogens and nucleic acid molecules that encode them are disclosed as well methods of inducing an immune response in an individual against HIV, HPV, HCV, hTERT and Influenza are disclosed.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 15, 2014
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: David B Weiner, Jian Yan, Dominick Laddy
  • Publication number: 20130004529
    Abstract: Improved anti-HIV immunogens and nucleic acid molecules that encode them are disclosed. Immunogens disclosed include those having consensus sequences for HIV Subtype A Envelope protein, those having consensus sequences for HIV Subtype B Envelope protein, those having consensus sequences for HIV Subtype C Envelope protein, those having consensus sequences for HIV Subtype D Envelope protein, those having consensus sequences for HIV Subtype B consensus Nef-Rev protein, and those having consensus sequences form HIV Gag protein subtypes A, B, C and D. Improved anti-HPV immunogens and nucleic acid molecules that encode them; improved anti-HCV immunogens and nucleic acid molecules that encode them; improved hTERT immunogens and nucleic acid molecules that encode them; and improved anti-Influenza immunogens and nucleic acid molecules that encode them are disclosed as well methods of inducing an immune response in an individual against HIV, HPV, HCV, hTERT and Influenza are disclosed.
    Type: Application
    Filed: April 27, 2012
    Publication date: January 3, 2013
    Inventors: David B. Weiner, Jian Yan, Dominick Laddy
  • Publication number: 20110305664
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Application
    Filed: June 10, 2011
    Publication date: December 15, 2011
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy
  • Publication number: 20100166787
    Abstract: Improved anti-HIV immunogens and nucleic acid molecules that encode them are disclosed, Immunogens disclosed include those having consensus sequences for HIV Subtype A Envelope protein, those having consensus sequences for HIV Subtype B Envelope protein, those having consensus sequences for HIV Subtype C Envelope protein, those having consensus sequences for HIV Subtype D Envelope protein, those having consensus sequences for HIV Subtype B consensus Nef-Rev protein, and those having consensus sequences form HIV Gag protein subtypes A, B, C and D. Improved anti-HPV immunogens and nucleic acid molecules that encode them; improved anti-HCV immunogens and nucleic acid molecules that encode them; improved hTERT immunogens and nucleic acid molecules that encode them; and improved anti-Influenza immunogens and nucleic acid molecules that encode them are disclosed.
    Type: Application
    Filed: July 30, 2007
    Publication date: July 1, 2010
    Inventors: David B Weiner, Jian Yan, Dominick Laddy
  • Publication number: 20090169505
    Abstract: An aspect of the present invention is directed towards DNA plasmid vaccines capable of generating in a mammal an immune response against a plurality of influenza virus subtypes, comprising a DNA plasmid and a pharmaceutically acceptable excipient. The DNA plasmid is capable of expressing a consensus influenza antigen in a cell of the mammal in a quantity effective to elicit an immune response in the mammal, wherein the consensus influenza antigen comprises consensus hemagglutinin (HA), neuraminidase (NA), matrix protein, nucleoprotein, M2 ectodomain-nucleo-protein (M2e-NP), or a combination thereof. Preferably the consensus influenza antigen comprises HA, NA, M2e-NP, or a combination thereof. The DNA plasmid comprises a promoter operably linked to a coding sequence that encodes the consensus influenza antigen. Additionally, an aspect of the present invention includes methods of eliciting an immune response against a plurality of influenza virus subtypes in a mammal using the DNA plasmid vaccines provided.
    Type: Application
    Filed: November 12, 2008
    Publication date: July 2, 2009
    Inventors: Ruxandra Draghia-Akli, David B. Weiner, Jian Yan, Dominick Laddy