Patents by Inventor Dominik Neumann

Dominik Neumann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210065904
    Abstract: A computer-implemented method and a system are for performing or supporting a medical task. An embodiment of the method includes obtaining a medical task and obtaining values for data fields of a number of available data fields. The method further includes determining whether an insufficient data field is present; and, if such a field is present, determining a relevance metric for the medical task, for the insufficient data field and/or the value thereof. Further, the method includes providing, via an estimator function, at least two different values for the insufficient data field; calculating at least two results for the medical task, which are based on the at least two different values provided; determining whether the relevance metric determined reaches or exceeds a relevance threshold value and, if this is the case, outputting an output signal based on the at least two results calculated.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 4, 2021
    Applicant: Siemens Healthcare GmbH
    Inventors: Thomas BOETTGER, Ulrich HARTUNG, Benedikt KRUEGER, Dominik NEUMANN, Maximilian WUERSTLE
  • Patent number: 10733910
    Abstract: A method and system for estimating physiological heart measurements from medical images and clinical data disclosed. A patient-specific anatomical model of the heart is generated from medical image data of the patient. A patient-specific multi-physics computational heart model is generated based on the patient-specific anatomical model by personalizing parameters of a cardiac electrophysiology model, a cardiac biomechanics model, and a cardiac hemodynamics model based on medical image data and clinical measurements of the patient. Cardiac function of the patient is simulated using the patient-specific multi-physics computational heart model. The parameters can be personalized by inverse problem algorithms based on forward model simulations or the parameters can be personalized using a machine-learning based statistical model.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: August 4, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Dominik Neumann, Tommaso Mansi, Sasa Grbic, Bogdan Georgescu, Ali Kamen, Dorin Comaniciu, Ingmar Voigt
  • Publication number: 20200242405
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 30, 2020
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20200160527
    Abstract: Systems and methods are provided for evaluating an aorta of a patient. A medical image of an aorta of a patient is received. The aorta is segmented from the medical image. One or more measurement planes are identified on the segmented aorta. At least one measurement is calculated at each of the one or more measurement planes. The aorta of the patient is evaluated based on the at least one measurement calculated at each of the one or more measurement planes.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: Saikiran Rapaka, Mehmet Akif Gulsun, Dominik Neumann, Jonathan Sperl, Rainer Kaergel, Bogdan Georgescu, Puneet Sharma
  • Patent number: 10643105
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: May 5, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20200029926
    Abstract: An embodiment of a method includes providing a first result list indicating a plurality of first anatomic structures and indicating, for each respective first anatomic structure of the plurality of first anatomic structures, a corresponding first severity indicator; providing a second result list indicating, for each respective second anatomic structure of the plurality of the second anatomic structures, a corresponding second severity indicator; providing a relationship matrix indicating a level of interrelatedness between the first anatomic structures and the second anatomic structures; and generating, based on the first result list provided, on the second result list and on the relationship matrix provided, a concordance visualization indicating a respective level of concordance between at least one of the first anatomic structures and the corresponding first severity indicator, and indicating a respective level of concordance between at least one of the second anatomic structures and the corresponding sec
    Type: Application
    Filed: December 13, 2018
    Publication date: January 30, 2020
    Applicant: Siemens Healthcare GmbH
    Inventors: Puneet Sharma, Ulrich Hartung, Chris Schwemmer, Ruth J. Soenius, Dominik Neumann
  • Patent number: 10496729
    Abstract: A method and system for estimating tissue parameters of a computational model of organ function and their uncertainty due to model assumptions, data noise and optimization limitations is disclosed. As applied to a cardiac use-case, a patient-specific anatomical heart model is generated from medical image data of a patient. A patient-specific computational heart model is generated based on the patient-specific anatomical heart model. Patient-specific parameters and corresponding uncertainty values are estimated for at least a subset of parameters of the patient-specific computational heart model. A surrogate model is estimated for a forward model of cardiac function, and the surrogate model is applied within Bayesian inference to estimate the posterior probability density function of the parameter space of the forward model. Cardiac function for the patient is simulated using the patient-specific computational heart model.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: December 3, 2019
    Inventors: Dominik Neumann, Tommaso Mansi, Bogdan Georgescu, Ali Kamen, Dorin Comaniciu
  • Publication number: 20190237184
    Abstract: A method of generating a first image from a medical text report comprises acquiring a medical text report comprising one or more natural language statements; analysing the medical text report, using a computer-implemented analysis process, to determine for each natural language statement whether the statement satisfies a predetermined criterion with respect to a first medical finding; and responsive to a determination that a said statement satisfies the predetermined criterion, adding an image representing the first medical finding to an image template, to generate the first image. Also disclosed is an apparatus and computer program.
    Type: Application
    Filed: January 22, 2019
    Publication date: August 1, 2019
    Inventors: Puneet Sharma, Dominik Neumann, Ruth J. Soenius, Ulrich Hartung
  • Publication number: 20180366224
    Abstract: A method for providing a secondary parameter, a decision support system, a computer-readable medium and a computer program product are disclosed. In an embodiment, the method is for providing a secondary parameter in a decision support system providing a primary parameter, in particular in a clinical decision support system. The method includes: providing an input data set; approximating a secondary parameter based on the input data set by using a sub-system being trained by a machine learning mechanism, in particular by a deep learning mechanism; and providing the approximated secondary parameter. The input data set is a shape data set.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 20, 2018
    Applicant: Siemens Healthcare GmbH
    Inventor: Dominik NEUMANN
  • Patent number: 10096107
    Abstract: Intelligent image parsing for anatomical landmarks and/or organs detection and/or segmentation is provided. A state space of an artificial agent is specified for discrete portions of a test image. A set of actions is determined, each specifying a possible change in a parametric space with respect to the test image. A reward system is established based on applying each action of the set of actions and based on at least one target state. The artificial agent learns an optimal action-value function approximator specifying the behavior of the artificial agent to maximize a cumulative future reward value of the reward system. The behavior of the artificial agent is a sequence of actions moving the agent towards at least one target state. The learned artificial agent is applied on a test image to automatically parse image content.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 9, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Florin Cristian Ghesu, Bogdan Georgescu, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Patent number: 9931790
    Abstract: A method and system for transcatheter aortic valve implantation (TAVI) planning is disclosed. An anatomical surface model of the aortic valve is estimated from medical image data of a patient. Calcified lesions within the aortic valve are segmented in the medical image data. A combined volumetric model of the aortic valve and calcified lesions is generated. A 3D printed model of the heart valve and calcified lesions is created using a 3D printer. Different implant device types and sizes can be placed into the 3D printed model of the aortic valve and calcified lesions to select an implant device type and size for the patient for a TAVI procedure. The method can be similarly applied to other heart valves for any type of heart valve intervention planning.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: April 3, 2018
    Assignee: Siemens Healthcare GmbH
    Inventors: Sasa Grbic, Razvan Ionasec, Tommaso Mansi, Ingmar Voigt, Dominik Neumann, Julian Krebs, Chris Schwemmer, Max Schoebinger, Helene C. Houle, Dorin Comaniciu, Joel Mancina
  • Publication number: 20180005083
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Application
    Filed: August 29, 2017
    Publication date: January 4, 2018
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Patent number: 9811906
    Abstract: A method is for segmenting an object in a medical image with a plurality of iteration steps. In an embodiment of the method, each iteration step includes generating a plurality of patches, a portion of the input image and a patch location being assigned to each patch, the patch location being indicative of the location of the portion of the input image relative to the input image. For each patch of the plurality of patches, the method includes determining a vote location based on the portion of the input image assigned to that patch and determining a target location based on the vote location and the patch location assigned to that patch. Finally, in an embodiment the method includes generating a vote map, each patch of the plurality of patches contributing to a pixel value at the target location of the patch in the vote map.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: November 7, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Anamaria Vizitiu, Olivier Ecabert, Jan Kretschmer, Dominik Neumann
  • Patent number: 9792531
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: October 17, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20170116497
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20170103532
    Abstract: Intelligent image parsing for anatomical landmarks and/or organs detection and/or segmentation is provided. A state space of an artificial agent is specified for discrete portions of a test image. A set of actions is determined, each specifying a possible change in a parametric space with respect to the test image. A reward system is established based on applying each action of the set of actions and based on at least one target state. The artificial agent learns an optimal action-value function approximator specifying the behavior of the artificial agent to maximize a cumulative future reward value of the reward system. The behavior of the artificial agent is a sequence of actions moving the agent towards at least one target state. The learned artificial agent is applied on a test image to automatically parse image content.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventors: Florin Cristian Ghesu, Bogdan Georgescu, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20170071671
    Abstract: Using computational models for the patient physiology and the various therapy options, a decision support system presents a range of predicted outcomes to assist in planning the therapy. The models are used in various experiments for the many therapy options to determine an optimal approach.
    Type: Application
    Filed: September 11, 2015
    Publication date: March 16, 2017
    Inventors: Dominik Neumann, Tommaso Mansi, Tiziano Passerini, Viorel Mihalef, Olivier Pauly, Bogdan Georgescu, Olivier Ecabert
  • Patent number: 9569736
    Abstract: Intelligent image parsing for anatomical landmarks and/or organs detection and/or segmentation is provided. A state space of an artificial agent is specified for discrete portions of a test image. A set of actions is determined, each specifying a possible change in a parametric space with respect to the test image. A reward system is established based on applying each action of the set of actions and based on at least one target state. The artificial agent learns an optimal action-value function approximator specifying the behavior of the artificial agent to maximize a cumulative future reward value of the reward system. The behavior of the artificial agent is a sequence of actions moving the agent towards at least one target state. The learned artificial agent is applied on a test image to automatically parse image content.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: February 14, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Florin Cristian Ghesu, Bogdan Georgescu, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20160303804
    Abstract: A method and system for transcatheter aortic valve implantation (TAVI) planning is disclosed. An anatomical surface model of the aortic valve is estimated from medical image data of a patient. Calcified lesions within the aortic valve are segmented in the medical image data. A combined volumetric model of the aortic valve and calcified lesions is generated. A 3D printed model of the heart valve and calcified lesions is created using a 3D printer. Different implant device types and sizes can be placed into the 3D printed model of the aortic valve and calcified lesions to select an implant device type and size for the patient for a TAVI procedure. The method can be similarly applied to other heart valves for any type of heart valve intervention planning.
    Type: Application
    Filed: April 16, 2015
    Publication date: October 20, 2016
    Inventors: Sasa Grbic, Razvan Ionasec, Tommaso Mansi, Ingmar Voigt, Dominik Neumann, Julian Krebs, Chris Schwemmer, Max Schoebinger, Helene C. Houle, Dorin Comaniciu, Joel Mancina
  • Publication number: 20160210435
    Abstract: A method and system for estimating physiological heart measurements from medical images and clinical data disclosed. A patient-specific anatomical model of the heart is generated from medical image data of the patient. A patient-specific multi-physics computational heart model is generated based on the patient-specific anatomical model by personalizing parameters of a cardiac electrophysiology model, a cardiac biomechanics model, and a cardiac hemodynamics model based on medical image data and clinical measurements of the patient. Cardiac function of the patient is simulated using the patient-specific multi-physics computational heart model. The parameters can be personalized by inverse problem algorithms based on forward model simulations or the parameters can be personalized using a machine-learning based statistical model.
    Type: Application
    Filed: August 28, 2014
    Publication date: July 21, 2016
    Applicant: Siemens Aktiengesellschaft
    Inventors: Dominik Neumann, Tommaso Mansi, Sasa Grbic, Bogdan Georgescu, Ali Kamen, Dorin Comaniciu, Ingmar Voigt